41896

Emissions of combustive-lubricating materials stocks

Лабораторная работа

Экология и защита окружающей среды

146; Gross emissions: M=PT103 ton yer P emission per hour P is P1 or P2 T ctive time of source which cn be clculted for litting up: T=V p103 hour yer Where p= 300 m3 hour for gs; p=30 m3 hour for petrol; p=30 m3 hour for diesel fuel Min chrcteristics of wsters ccording to prgrph 17 of the lw On wstes producer determines composition nd chrcteristics of production wstes nd degree of their dnger for environment nd mn's helth. The dnger degree is coordinted with executive uthorities. Degree of dnger is chrcterized by the clss of...

Английский

2013-10-26

32.01 KB

0 чел.

The purpose of the work: to calculate the emissions of combustive-lubricating materials

such as gas, diesel fuel, petrol.

Theoretical information

Emissions of combustive-lubricating materials stocks have two kinds of origin.

  1.  emissions during filling up reservoirs;
  2.  emissions during storage;

We consider the following kinds of fuel:

  1.  gas;
  2.  diesel fuel;
  3.  petrol.

Structure of CLM stock:

The total volume of CL M stock = 20330 m3

 CLM stock consists of 20 land reservoirs:

  1.  11 of capacity 1780 m3 ;
  2.  10 of capacity 75 m3;

■■»

Their specifications are following:

  1.  6 reservoirs of capacity 1780 m3 for gas storage
  2.  3 reservoir of 1780 m3 for diesel fuel storage
  3.  2 reservoir of capacity 1780 m3   for petrol storage
  4.  6 reservoirs of capacity 75 m3 for petrol storage
  5.  4 reservoirs of capacity 75 m3 for diesel fuel storage

Annual need for gas is 158375 m3/year

Annual need for petrol is 8561 m3/year

Annual need for diesel is 9412 m3/year

Emissions durins filline up reservoirs are calculated according to the formula:

P2=2.52*V*P(38)*Mn(K5c+K5w)K6*K7*(l-n)*10-9kg/hour

Here:

Mn - molecular weight:

Mn= 119.5 - for gas;

Mn = 69 - for patrol;

Mn =165 - for diesel fuel.

K5C and K5W - coefficients of temperature conditions of gas space for cold and warm season;

K6 is a coefficient calculated by a formula:

V - annual volume of fuel;

Vres- reservoir volume (m3 );

K7 - is a coefficient, depending on exploitation regime;

K7=0.85;

K8 - a coefficient depending on pressure of saturated vapors and climate zone;

K8=0.5 - for gas;

K8=0.56 - for petrol;

K8=0.5 - for diesel fuel;

n=0 - absence of purification structures;

P(38) depends on boiling temperature, which is represented by equation:

teqv==tb+(tb+tc):8.80

Fuel

tb

tc

teqv

Gas

     145

280

193.3

Petrol

35

195

61

Diesel fuel

210

360

227

Taking into account these values and thermodynamic laws:

P(38)=1.279GPa-forgas;

P(38)=5.88GPa - for petrol;

P(38)=0.3GPa - for diesel fuel;

Coefficients K5C and K5W:

for gas: K5C =0.045; K5W=0.165;

for petrol: K5C =0.1863; K5W=0.4995;

for diesel fuel: K5C =0.0295; K5W=0.146;

Gross emissions:

M=P*T*10-3 ton/year

P - emission per hour, P is P1 or P2

T - active time of a source which can be calculated for litting up:

T=V/p*10-3  hour/year, Where

p= 300 m3/hour- for gas;

p=30 m3/hour- for petrol;

p=30 m3/hour- for diesel fuel

Main characteristics of wasters

According to paragraph 17 of the law "On wastes" a producer determines composition and characteristics of production wastes and degree of their danger for environment and man's health. The danger degree is coordinated with executive authorities.

Degree of danger is characterized by the class of danger which determined by wasters toxicity. Depending on physical-chemical properties all wastes are divided into four classes of danger.

Class of danger

Degree of danger

I class

Extraordinary dangerous wasters

11 class

Wasters of high danger

III class

Wasters of moderate danger

IV class

Wasters of low danger

Class of danger is determined according to the most harmful indices.

Normative document defining the order of calculation of class of danger is State sanitary regulations and standards ДcaнПін 2.2.7.029-99 "Гігієнічні вимоги щодо подовження з промисловими відходами та визначення їх класу небезпеки для здоров’я населення", confirmed by Ministry of health - epidemiological board in 1999.

Class of danger for wastes according to their chemical composition is determined by calculation or in experimental way By the value DL50, or LAC for giver substance in soil.

SPESIAL TERMS:

DL50 - doze average lethal - the quantity of dangerous substance implying mortality of 50% of stand ird group of experimental animals for appointed time period of observation (B03),

Working area - space of 2 meter height over floor level or ground level where working places (temporary or regular) are situated.

Limit allowable concentration of dangerous substance in air working area - concentration of substance which does not imply disease or rejection of health state under the condition of regulated duration of its daily influence during 8-hour working day, but not more than 40 hours per week. Disease or rejection of health includes those which can be diagnosed by modern investigated methods during man's life of life of future generation.

Toxicity - measure of i.icompatibility of substance with life, inversely proportional to doze average lethal (I/DL50) or to concentration average lethal (I/CL50).

CL50 - concentration average lethal    concentration of dangerous substance in environment objects which leads to mortality of 50% of standard group of experimental animals under determined exposition and determined period of further observation.

All wasters complicated chemical characteristics. To determine class of danger it is necessary to estimate mass indices of all ingredients. This analysis is carried out by sanitary…..

R - solubility of chemical ingredient in water (in grams per 100 grams of water of temperature not more than 250 C);

P  -  press of saturated stream of ingredients in mm of mercury under he temperature 250 C, which have the boiling temperature not more than 80° C under the pressure 760 mm of mercury;

Dl50 - doze average lethal of chemical ingredient during introduction in stomach (mgr/kg);

C - quantity of given ingredient in the total volume of wastes (t/t).

If DL50 is absent one us' s values of DL50 determined according to indices of class of danger in air of working area (ГOCT 12.1.005-8).

Class of danger <a air of working area

Equivalent of DL50

Lg(DL50)

I

15

1 176

II

150

2.176

III

5000

3.699

IV

>5000

3.778

Calculation of the class of danger on the base of DLgn:

Lg(DL50)

i-ordinal number of an ingredient.

After calculation of Ki, for all ingredients of wastes one chooses from 2 to 3 ingredients with smallest Ki. If the conditions

A K1<K2<K3 andK1>K3

 (1)

Can be  satisfied then it is possible to choose 3 ingredients. Otherwise one chooses 2 ingredients. After that it is necessary to calculate summarized index of danger according to the formular:

       1  __

Then from the following table the class of danger of wastes is determined:

Summarized index K on the base DL50

Class of danger

Toxicity degree

Less than 1.3

I class

Extraordinarily dangerous wastes

1.3...3.33

II class

Wastes of high danger

3.4...10

III class

Wastes of moderate danger

More than 10

IV class

Wastes of law danger

Calculation of the class of danger on the base of limit allowable concennations:

If wastes include chemicak substances, for which there are limit allowable concentrations in soil then index is calculated by the formula:

 

After calculation of all Ki it is necessary to choose 2 or 3 ingredients with smallest Ki  (it depends on fulfillment of conditions (1)) and to calculate summarized index by the formula:

the class of danger is determined from the table:

Summarized index K on the base LAC

Class of danger

Toxicity degree

Less than2

I class

Extraordinary dangerous wastes

2... 16

II class

Wastes of high danger

16.1. .30

III class

Wastes of moderate index

More than 30

IV class

Wastes of low danger

Practical Work

1.    Physical-chemical and toxic chaiacteristics of  ingredients of wastes of galvanic production are

represented

by the table:

Name of component

C(t/t)

P

(mm.mc)

R(gT/100gr of water)

DL50 (m/kg)

Class of

danger

(ГOCT

12.1.005-8)

Equivalent ofDL50

Lg(DL50)

ZnS04*7

0.18

0

165

-

III

5000

3.699

ZnO

0.03

0

0.00016

-

ІІ

150

2.176

Fe(OH)3

0.60

0

0

-

III

5000

3.699

F02O3

0.15

0

0

-

III

5000

3.699

To calculate the class of danger of wastes.

2.  Physical-chemical  ingredients of wastes' of galvanic profuction are represented by the table:

Name of component

C(t/t)

P (mm.mc)

R(gr/100gr of water)

Lac in soil (mgr/kg) by metal

PbO, Pb203

0.22

0

0 .276

3

MO

0.35

0

0

4

Mn02

0.06

0

0

1500

ZnO

0.55

0

0.00016

3

CuO.

0.01

0

0

3

To calculate the class of danger of wastes.


 

А также другие работы, которые могут Вас заинтересовать

42680. Исследование процесса испытания конструкционных материалов при случайном режиме нагружения 278 KB
  Ознакомиться c основными процедурами, предшествующим установлению ресурса ВС; методами схематизации процессов нагружения. Оформить отчет №1 по лабораторной работе в виде рукописного конспекта, с необходимыми иллюстрациями. В отчете дайте развернутые ответы на все вопросы, которые приведены ниже.
42681. Исследование процесса испытания конструкционных материалов при случайном режиме нагружения 40 KB
  Ознакомиться c гипотезами накопления повреждений; Стандартизированными спектрами нагружения используемых при изучении усталостных характеристик летательных аппаратов. ВОПРОСЫ В чем заключается смысл концепции линейного накопления повреждений при усталости Основные недостатки линейной гипотезы накопления повреждений В чем заключается смысл модифицированных гипотез...
42682. Автоматические системы контроля технического состояния самолета. Деформационный рельеф плакированных сплавов как показатель истории нагруженности 1.63 MB
  Ознакомиться с проблемами концентрации напряжения и коэффициентами которые определяют ее; принципами построения автоматизированной системой контроля технического состояния самолета; деформационным рельефом который является показателем поврежденности конструкции самолета. На распечатанном рисунке самолета А380 формат А2 нанести примеры применения систем контроля целостности конструкции. ВОПРОСЫ В чем...
42683. Основные приемы работы в СУБД Microsoft Access 292 KB
  Основные приемы работы в СУБД Microsoft ccess Приложение ccess является программой входящий в пакет Microsoft Office и предназначено для работы с базами данных. База данных. В общем смысле термин база данных можно применить к любой совокупности связанной информации объединенной вместе по определенному признаку организованных по определенным правилам предусматривающим общие принципы описании хранения и манипулирования данными которые относятся к определенной предметной области. Система управления базами данных СУБД – прикладное...
42684. Аппаратное обеспечение персональних ЭВМ 43.5 KB
  Харьков 2010 Лабораторная работа №1 Аппаратное обеспечение персональних ЭВМ Цель работы: Ознакомление с составом и структурой ПЭВМ. Порядок выполнения работы: Визуально ознакомится с составом ПЭВМ. Определить составные части ПЭВМ и...
42685. Операционная система Windows XP/2000, основные элементы 78 KB
  С помощью проводника WinE создали на диске С: каталог Группа АП10Б. В каталоге группы на двух членов бригады создали файл с помощью редактора Notepd. В файле записали: Стерлик Дмитро Кунченко Алексей Созданный файл открыли с помощью редактора WordPd и отредактировали его. С помощью графического редактора Pint нарисовали картинку размножили ее по экрану и сохранили в каталоге Группа АП10Б.
42686. Работа в операционной системе Windows XP2000 79 KB
  С помощью проводника WinE создали на диске С: каталог Группа АП10Б. В каталоге группы на двух членов бригады создали файл с помощью редактора Notepd. В файле записали: Стерлик Дмитро Александрович Алексей Кунченко Михайлович Созданный файл открыли с помощью редактора WordPd и отредактировали его. С помощью графического редактора Pint нарисовали картинку размножили ее по экрану и сохранили в каталоге Группа АП10Б.
42687. ИССЛЕДОВАНИЕ ОДНОПОЛУПЕРИОДНОГО И ДВУХПОЛУПЕРИОДНОГО ВЫПРЯМИТЕЛЕЙ С ПРИМЕНЕНИЕМ СИСТЕМЫ СХЕМОТЕХНИЧЕСКОГО МОДЕЛИРОВАНИЯ «ELECTRONICS WORKBENCH» 159 KB
  Краткие теоретические сведения Среднее значение выходного напряжения постоянная составляющая в схеме однополупериодного выпрямителя рисунок 2. Среднее значение выходного напряжения постоянная составляющая мостового выпрямителя рис.3 Частота выходного сигнала для схемы с однополупериодным или двухполупериодным выпрямителем а так же для схемы с двухполупериодным мостовым выпрямителем вычисляется как величина обратная периоду выходного сигнала: . Если на выход любого из выше рассмотренных выпрямителей включить конденсатор то...