41898

ИТЕРАЦИОННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Лабораторная работа

Информатика, кибернетика и программирование

Метод Ньютона. В качестве начального приближения здесь выбирается правый или левый конец отрезка в зависимости от того в котором выполняется достаточное условие сходимости метода Ньютона вида: Условие выполняется на обоих концах отрезка следовательно в качестве начального приближения разрешено выбрать любой из них. Рабочая формула метода Ньютона для данного уравнения запишется так: Условия выхода итерационного процесса аналогичны условиям метода простых итераций: и . Модифицированный метод Ньютона.

Русский

2013-10-26

251.24 KB

26 чел.

ЛАБОРАТОРНАЯ РАБОТА №1-2.

ИТЕРАЦИОННЫЕ МЕТОДЫ

РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ.

Вариант №5.

Выполнил:

Студент группы 24275

Кожевников Е.И.

Проверил:

Доцент

Горбунов Д.В.

Задание.

Доказать графическим и аналитическим методами существование единственного корня нелинейного уравнения на отрезке .

Решение:

Графический метод.

Из графика функции на Рис.1 видно, что функция пересекает ось в одной точке, являющейся приближенным значением корня нелинейного уравнения. Но так как данная функция имеет сложный аналитический вид, то преобразуем уравнение к виду и построим два графика и , имеющих более простой аналитический вид (Рис.2). Абсцисса точки пересечения графиков является приближенным значением корня.

Рис.1 График функции

Рис.2 Графики функций и ,

Аналитический метод.

Функция непрерывна на отрезке , имеет на концах отрезка разные знаки (), а производная функции не меняет знак на отрезке (). Следовательно, нелинейное уравнение имеет на указанном отрезке единственный корень.

Метод простых итераций.

Построим функцию . Константа выбирается из достаточного условия сходимости:

Если производная , то значение выбирается из интервала , если производная , то – из интервала .

Так как для рассматриваемого примера всюду положительна на отрезке , то придавая переменной различные значения из интервала и выбирая наименьший интервал , получим .

Выбираем произвольное значение из этого интервала.

Пусть . Тогда рабочая формула метода простых итераций будет иметь вид:

 

Начнем итерационный процесс, задав начальное приближение х0 равное минимальному значению х в заданном интервале , т.е. х0=-1,1. Итерационный процесс заканчивается при одновременном выполнении двух условий:

и . , где ε=0,001, δ=0,01.

В этом случае значение является приближенным значением корня нелинейного уравнения на отрезке .

Метод Ньютона.

В качестве начального приближения здесь выбирается правый или левый конец отрезка, в зависимости от того, в котором выполняется достаточное условие сходимости метода Ньютона вида:

 

 

Условие выполняется на обоих концах отрезка, следовательно, в качестве начального приближения разрешено выбрать любой из них. Выбираем наименьший: . Рабочая формула метода Ньютона для данного уравнения запишется так:

Условия выхода итерационного процесса аналогичны условиям метода простых итераций:

и . , где ε=0,001, δ=0,01.

Модифицированный метод Ньютона.

Начальное приближение выбирается аналогично методу Ньютона, т.е. . Рабочая формула модифицированного метода Ньютона для данного примера запишется так:

 

Условия выхода итерационного процесса аналогичны условиям метода простых итераций:

и . , где ε=0,001, δ=0,01.

Блок-схема метода простых итераций, метода Ньютона и модифицированного метода Ньютона приведена на рисунке 3.

Рис.3 Схема итерационных методов.

Тексты программ:

  1. Метод простых итераций:

Program P1_2;

uses Crt;

var n: integer;

x0,x,eps,z,d,y,c:real;

begin

 clrscr;

 n:=0; x0:=-1.1; c:=-0.1; x:=x0; eps:=0.001; d:=0.01;

 writeln ('  n     xi      xi+1   xi+1-xi  f(xi+1)   ');

 repeat

   {Метод простых итераций}

    y:=x+c*(exp(x)-2*exp(ln(abs(x-1))*2));                  

    writeln (n:3, x:9:5, y:9:5, abs(y-x):9:5, abs(exp(y)-2*(y-1)*(y-1)):9:5);

    z:=x;

    x:=y;

    n:=n+1;

  until (abs(x-z)<=eps) and (abs(exp(x)-2*(x-1)*(x-1))<=d);

readln;

end.

  1. Метод Ньютона:

Program P1_2_N;

uses Crt;

var n: integer;

x0,x,eps,z,d,y,c:real;

begin

 clrscr;

 n:=0; x0:=-1.1; c:=-0.1; x:=x0; eps:=0.001; d:=0.01;

 writeln ('  n     xi      xi+1   xi+1-xi  f(xi+1)   ');

 repeat

   {Метод Ньютона}

    y:=x-(exp(x)-2*(x-1)*(x-1))/(exp(x)-4*(x-1));

    writeln (n:3, x:9:5, y:9:5, abs(y-x):9:5, abs(exp(y)-2*(y-1)*(y-1)):9:5);

    z:=x;

    x:=y;

    n:=n+1;

  until (abs(x-z)<=eps) and (abs(exp(x)-2*(x-1)*(x-1))<=d);

readln;

end.

  1. Модифицированный метод Ньютона:

Program P1_2_NM;

uses Crt;

var n: integer;

x0,x,eps,z,d,y,c:real;

begin

 clrscr;

 n:=0; x0:=-1.1; c:=-0.1; x:=x0; eps:=0.001; d:=0.01;

 writeln ('  n     xi      xi+1   xi+1-xi  f(xi+1)   ');

 repeat

   {Метод Ньютона Модифицированный}

    y:=x-(exp(x)-2*(x-1)*(x-1))/(exp(x0)-4*(x0-1));

    writeln (n:3, x:9:5, y:9:5, abs(y-x):9:5, abs(exp(y)-2*(y-1)*(y-1)):9:5);

    z:=x;

    x:=y;

    n:=n+1;

  until (abs(x-z)<=eps) and (abs(exp(x)-2*(x-1)*(x-1))<=d);

readln;

end.

Результаты отработки программы:

Рис.4 – программы, работающей по методу простых итераций;

Рис.5 – программы, работающей по методу Ньютона;

Рис.6 – программы, работающей по модифицированному методу Ньютона.

Рис.4 Ответ – х(11)≈0,21219

Рис.5 Ответ – х(4)≈0,21331

Рис.6 Ответ – х(10)≈0,21279


 

А также другие работы, которые могут Вас заинтересовать

44873. Сравнительный анализ издержек производства и реализованной продукции 22.42 KB
  Издержки производства затраты связанные с производством товаров. Классификации издержек Экономические издержки состоят во-первых из актуальных и невозвратных Невозвратные связаны с затратами навсегда покинувшими хозяйственный оборот без малейшей надежды на возвращение. Актуальные издержки принимают в расчёт при принятии решений издержки невозвратные нет. Актуальные экономические издержки в свою очередь составляют из явных и вменённых.
44876. Работа с учебником как метод обучении РЯ в школе 13.99 KB
  Школьный учебник - это специальная книга излагающая основы научных знаний по русскому языку и предназначенная для постижения учебных целей. Учебник средство обучения вместе с материалами и пособиями. Основными функциями учебника являются следующие: информационная трансформационная систематизирующая и воспитательная.
44877. Имена числительные 17.1 KB
  Стилистическими вариантами являются формы местоимений 3-го лица У нее – У ней, к ним – К им, от него – От его, возле них – Возле их и др. Первые варианты являются нормой литературной речи, вторые имеют просторечный характер
44878. Понятие социальной проблемы. Типология социальных проблем 23.5 KB
  Понятие социальной проблемы. проблемы проявление разрыва соц отношений или разрушения соц норм функционирования в следствии обострения существующих противоречий кот. Проблемы бывают объективные то есть связанные с внешним миром; субъективные то есть связанные с внутренним миром.Социальные проблемы это сложные познавательные задачи решение кот.
44880. Сергей Тимофеевич Конёнков 40.93 KB
  В своём творчестве Конёнков прошёл периоды увлечения творчеством Микеланджело античностью народной деревянной скульптурой. Работая над сказочными и фольклорными образами знакомыми ему с детства Конёнков обращался к необычным материалам например к инкрустации дерева цветным камнем. По существу то что до сих пор находило воплощение лишь в кустарной резьбе игрушках и произведениях прикладного искусства Конёнков увеличил до крупных форм.