41898

ИТЕРАЦИОННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Лабораторная работа

Информатика, кибернетика и программирование

Метод Ньютона. В качестве начального приближения здесь выбирается правый или левый конец отрезка в зависимости от того в котором выполняется достаточное условие сходимости метода Ньютона вида: Условие выполняется на обоих концах отрезка следовательно в качестве начального приближения разрешено выбрать любой из них. Рабочая формула метода Ньютона для данного уравнения запишется так: Условия выхода итерационного процесса аналогичны условиям метода простых итераций: и . Модифицированный метод Ньютона.

Русский

2013-10-26

251.24 KB

25 чел.

ЛАБОРАТОРНАЯ РАБОТА №1-2.

ИТЕРАЦИОННЫЕ МЕТОДЫ

РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ.

Вариант №5.

Выполнил:

Студент группы 24275

Кожевников Е.И.

Проверил:

Доцент

Горбунов Д.В.

Задание.

Доказать графическим и аналитическим методами существование единственного корня нелинейного уравнения на отрезке .

Решение:

Графический метод.

Из графика функции на Рис.1 видно, что функция пересекает ось в одной точке, являющейся приближенным значением корня нелинейного уравнения. Но так как данная функция имеет сложный аналитический вид, то преобразуем уравнение к виду и построим два графика и , имеющих более простой аналитический вид (Рис.2). Абсцисса точки пересечения графиков является приближенным значением корня.

Рис.1 График функции

Рис.2 Графики функций и ,

Аналитический метод.

Функция непрерывна на отрезке , имеет на концах отрезка разные знаки (), а производная функции не меняет знак на отрезке (). Следовательно, нелинейное уравнение имеет на указанном отрезке единственный корень.

Метод простых итераций.

Построим функцию . Константа выбирается из достаточного условия сходимости:

Если производная , то значение выбирается из интервала , если производная , то – из интервала .

Так как для рассматриваемого примера всюду положительна на отрезке , то придавая переменной различные значения из интервала и выбирая наименьший интервал , получим .

Выбираем произвольное значение из этого интервала.

Пусть . Тогда рабочая формула метода простых итераций будет иметь вид:

 

Начнем итерационный процесс, задав начальное приближение х0 равное минимальному значению х в заданном интервале , т.е. х0=-1,1. Итерационный процесс заканчивается при одновременном выполнении двух условий:

и . , где ε=0,001, δ=0,01.

В этом случае значение является приближенным значением корня нелинейного уравнения на отрезке .

Метод Ньютона.

В качестве начального приближения здесь выбирается правый или левый конец отрезка, в зависимости от того, в котором выполняется достаточное условие сходимости метода Ньютона вида:

 

 

Условие выполняется на обоих концах отрезка, следовательно, в качестве начального приближения разрешено выбрать любой из них. Выбираем наименьший: . Рабочая формула метода Ньютона для данного уравнения запишется так:

Условия выхода итерационного процесса аналогичны условиям метода простых итераций:

и . , где ε=0,001, δ=0,01.

Модифицированный метод Ньютона.

Начальное приближение выбирается аналогично методу Ньютона, т.е. . Рабочая формула модифицированного метода Ньютона для данного примера запишется так:

 

Условия выхода итерационного процесса аналогичны условиям метода простых итераций:

и . , где ε=0,001, δ=0,01.

Блок-схема метода простых итераций, метода Ньютона и модифицированного метода Ньютона приведена на рисунке 3.

Рис.3 Схема итерационных методов.

Тексты программ:

  1. Метод простых итераций:

Program P1_2;

uses Crt;

var n: integer;

x0,x,eps,z,d,y,c:real;

begin

 clrscr;

 n:=0; x0:=-1.1; c:=-0.1; x:=x0; eps:=0.001; d:=0.01;

 writeln ('  n     xi      xi+1   xi+1-xi  f(xi+1)   ');

 repeat

   {Метод простых итераций}

    y:=x+c*(exp(x)-2*exp(ln(abs(x-1))*2));                  

    writeln (n:3, x:9:5, y:9:5, abs(y-x):9:5, abs(exp(y)-2*(y-1)*(y-1)):9:5);

    z:=x;

    x:=y;

    n:=n+1;

  until (abs(x-z)<=eps) and (abs(exp(x)-2*(x-1)*(x-1))<=d);

readln;

end.

  1. Метод Ньютона:

Program P1_2_N;

uses Crt;

var n: integer;

x0,x,eps,z,d,y,c:real;

begin

 clrscr;

 n:=0; x0:=-1.1; c:=-0.1; x:=x0; eps:=0.001; d:=0.01;

 writeln ('  n     xi      xi+1   xi+1-xi  f(xi+1)   ');

 repeat

   {Метод Ньютона}

    y:=x-(exp(x)-2*(x-1)*(x-1))/(exp(x)-4*(x-1));

    writeln (n:3, x:9:5, y:9:5, abs(y-x):9:5, abs(exp(y)-2*(y-1)*(y-1)):9:5);

    z:=x;

    x:=y;

    n:=n+1;

  until (abs(x-z)<=eps) and (abs(exp(x)-2*(x-1)*(x-1))<=d);

readln;

end.

  1. Модифицированный метод Ньютона:

Program P1_2_NM;

uses Crt;

var n: integer;

x0,x,eps,z,d,y,c:real;

begin

 clrscr;

 n:=0; x0:=-1.1; c:=-0.1; x:=x0; eps:=0.001; d:=0.01;

 writeln ('  n     xi      xi+1   xi+1-xi  f(xi+1)   ');

 repeat

   {Метод Ньютона Модифицированный}

    y:=x-(exp(x)-2*(x-1)*(x-1))/(exp(x0)-4*(x0-1));

    writeln (n:3, x:9:5, y:9:5, abs(y-x):9:5, abs(exp(y)-2*(y-1)*(y-1)):9:5);

    z:=x;

    x:=y;

    n:=n+1;

  until (abs(x-z)<=eps) and (abs(exp(x)-2*(x-1)*(x-1))<=d);

readln;

end.

Результаты отработки программы:

Рис.4 – программы, работающей по методу простых итераций;

Рис.5 – программы, работающей по методу Ньютона;

Рис.6 – программы, работающей по модифицированному методу Ньютона.

Рис.4 Ответ – х(11)≈0,21219

Рис.5 Ответ – х(4)≈0,21331

Рис.6 Ответ – х(10)≈0,21279


 

А также другие работы, которые могут Вас заинтересовать

6904. Суеверие голубя 59.5 KB
  Суевериеголубя Сказать, что подкрепление это стимул на ответные реакции, значит сказать ничего более чем то, что он следует за ответной реакцией. Он может следовать из-за некоторых механических связей или из-за посредничества другого механизма...
6905. Нужны ли теории научения 652.5 KB
  Нужны ли теории научения В своей работе 1950 г. Скиннер задался вопросом - Нужны ли теории научения? и предположил, что нет. Он определил понятие слова теория. Оно означало "любое объяснение наблюдаемого факта, апеллирующее к событиям, происх...
6906. Электромагнитное поле. Полная система уравнений электромагнитного поля в дифференциальной и интегральной форме. Волновое уравнение 28.22 KB
  Электромагнитное поле. Полная система уравнений электромагнитного поля в дифференциальной и интегральной форме. Волновое уравнение. Электромагнитное поле - это совокупность электрических и магнитных полей, которые могут переходить друг в друга...
6907. Визначення питомого заряду електрону методом магнетрону 276.5 KB
  Визначення питомого заряду електрону методом магнетрону Мета роботи - вивчення одного з методів визначення питомого заряду електрону, який базується на рухові заряджених частинок під дією однорідного магнітного і радіального електричного полів,...
6908. Дослідження електричних полів 279.5 KB
  Дослідження електричних полів Мета роботи: користуючись методом електролітичної ванни визначити еквіпотенціальні поверхні та силові лінії електричного поля між електродами різної конфігурації, розрахувати траєкторію руху пучка електронів. Зміст робо...
6909. Термоелектронна емісія 387 KB
  Термоелектронна емісія Мета роботи: дослідження явища термоелектронної емісії на основі циліндричного вакуумного діода та його вольт-амперних характеристик перевірка закону трьох других та визначення питомого заряду електрона визначення роботи ...
6910. Дослідження плазми газового розряду 410.5 KB
  Дослідження плазми газового розряду Мета роботи: визначення основних параметрів плазми (температури електронного газу і концентрації електронів) методом електричних зондів Ленгмюра. Зміст роботи і завдання 1. Для трьох - п’яти різних значе...
6911. Дослід Франка та Герца 126.5 KB
  Дослід Франка та Герца Мета роботи: Дослідити вольт-амперну характеристику вакуумної лампи з парами ртуті. Переконатися, що електрони які зазнали зіткнень з атомами ртуті передають їм енергію лише характерними порціями (енергія переходу). Визначити ...
6912. Методи вимірювання магнітних полів 79.5 KB
  Методи вимірювання магнітних полів Мета роботи: Ознайомлення з принципом дії приладу Ш1-1 для вимірювання індукції магнітного поля (принцип ядерного магнітного резонансу). Ознайомлення з принципом дії прилада Ш1-8 для вимірювання індукції магн...