41943

Исследование колебаний вращающегося вала

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Теоретический расчет частот собственных колебаний вала и деформаций возникающих при его вращении. Экспериментальное определение прогибов вращающегося вала в различных схемах нагружения. Изза неточности изготовления и сборки центры масс деталей как правило не находятся на оси вращения вала т.

Русский

2013-10-26

214.31 KB

19 чел.

Лабораторная работа №3

Исследование колебаний вращающегося вала

Цель работы:

1.  Теоретический расчет частот собственных колебаний вала и деформаций, возникающих при его вращении.

2.  Экспериментальное определение прогибов вращающегося вала в различных схемах нагружения.

3.Сравнительный анализ результатов теоретических и экспериментальных исследований.

Введение

Разнообразное технологическое оборудование химических и пищевых производств имеет валы с закрепленными на них вращающимися деталями такими как роторы центрифуг и сепараторов, рабочие колеса центробежных насосов и компрессоров, диски резательных машин и молотковых дробилок, мешалки перемешивающих устройств, шкивы, зубчатые колеса.

Из-за неточности изготовления и сборки центры масс деталей, как правило, не находятся на оси вращения вала, т.е. всегда имеется остаточный дисбаланс.

При вращении вала вследствие дисбаланса возникают переменные по направлению силы инерции, дополнительно нагружающие вал и его опоры и вызывающие механические колебания системы. Под механическими колебаниями понимают многократное поочередное возрастание, и убывание во времени кинематических и динамических параметров, характеризующих техническую систему. Такие колебания проявляются в нарушении режима работы машин, что приводит к увеличению износа, повышению напряжений в деталях конструкции вплоть до их разрушения, ухудшению условий труда (возрастанию уровня шума и вибрационного воздействия на человека и окружающую среду). В связи с этим необходимо исследование колебаний вращающегося вала.

 

Теоретическая часть

Механические колебания, возбуждаемые в конструкциях различными периодически действующими силами, называются вынужденными, а внезапно приложенными силами - свободными. При анализе колебаний упругие системы принято различать по числу степеней свободы, т. е. по числу независимых координат, однозначно определяющих положение системы в любой момент времени.

При угловой скорости вала ωр, равной угловой частоте его собственных колебаний (ω1 или ω2 ) наступает явление резонанса и прогиб вала стремиться к бесконечности. Такая скорость называется критической. Валы машин, эксплуатируемые при скоростях меньших первой критической ( ωр ‹ ω1 ), называются жесткими; а валы работающие в закритической области (ωр › ω1) - гибкими. Для гибких валов характерно свойство самоцентрирования, выражающееся в уменьшении деформаций вала при возрастании его рабочей скорости.

В период разгона присутствуют вынужденные и свободные колебания. Это нестационарный режим работы вала. После выхода на заданную скорость собственные колебания, вследствие потерь энергии на трение о среду и в кинематических парах, быстро затухают. Устанавливается стационарный режим, при котором имеют место только прогибы, вызванные статической . неуравновешенностью вращающихся масс.

Описание экспериментальной установки

Экспериментальное определение амплитуды колебаний вращающегося вала производится на лабораторной установке, схема которой представлена на рис. 1. Установка включает в себя исследуемый вал 19, вращающийся в опорах 18, на котором закрепляются один или два диска 20 в зависимости от схемы нагружения вала. Измерение амплитуды колебаний вала осуществляется с помощью лимба 12, контактного щупа 16 и индикатора 15 с блоком питания 21. Лимб установлен на салазках 11, имеющих возможность перемещаться перпендикулярно к оси вала за счет передачи "винт-гайка". Эта поперечная подача осуществляется вращением маховика 13 и служит для установки фиксированного значения измерительного устройства. Направляющие салазок вместе с суппортом 1, могут двигаться вдоль оси исследуемого вала, что позволяет проводить замеры прогиба вала практически в любой его точке.

 

Рис. 1. Схема экспериментальной установки

Рис. 2. Расчетная схема пролетного вала постоянного сечения

Проверка на виброустойчивость

Безразмерный динамический прогиб

Приведенная масса диска

Масса единицы длины вала

Относительная суммарная масса диска

Безразмерная критическая угловая скорость

Первая частота вращения

Проверка вала на виброустойчивость выполнена

Проверка на жесткость

Относительная координата опасного сечения

Безразмерный динамический прогиб

Смещение вала за счет начальной изогнутости

Смещение оси вала в расчетных сечениях из-за зазоров в опорах

Приведенный эксцентриситет

Приведенная масса вала

Приведенный эксцентриситет массы вала с деталями

В установившемся режиме динамический прогиб оси вала в точке приведения можно найти по формуле

Смещение оси вала за счет динамического прогиба

При

При

При

Динамическое смещение вала

При

При

При

Проверка вала на прочность

Координаты опасных сечений

- диаметр вала;

Динамическое смещение центра масс диска

Динамическое смещение в точке В

Центробежная сила действующая на диск

Реакция опоры А

Реакция опоры В

Крутящий момент

Изгибающий момент

Эквивалентное напряжение

Запас прочности

Условие выполнено

АНАЛИЗ РЕЗУЛЬТАТОВ

В лабораторной работе были определены динамические смещения вала теоретически и экспериментально. Полученная погрешность находится в пределах 6,5 – 81,8%.

Также был проведен расчет вала на виброустойчивость, на жесткость и на прочность. В результате вал оказался пригоден для работы в данных условиях.

Вывод:

В результате работы были проверены:

  1. прогибы вращающегося вала
  2. произвели проверку на виброустойчивость, жесткость и прочность

Данный вал удовлетворяет всем этим условиям


 

А также другие работы, которые могут Вас заинтересовать

68944. Статичні функції-члени 28 KB
  Функції-члени також можуть бути статичними, але на них розповсюджується декілька обмежень. Вони мають прямий доступ тільки до інших статичних членів класу. (Зрозуміло, глобальні функції і дані також доступні статичним функціям-членам.) Статична функція-член не має покажчика this.
68945. Передача об’єктів функціям. Повернення об’єктів 37.5 KB
  Об’єкти можна передавати функціям, як звичайні змінні. Для цього застосовується звичайний механізм передачі параметрів по значенню. Не дивлячись на зовнішню простоту, цей процес може привести до несподіваних наслідків, що стосуються конструкторів і деструкцій.
68946. Покажчик this 29 KB
  При виклику функції-члена їй неявно передається покажчик на зухвалий об’єкт. Цей покажчик називається this. Розглянемо програму, в якій описаний клас pwr, призначений для обчислення ступеня деякого числа.
68947. Вказівники на члени класу 32 KB
  Вказівник такого вигляду називається вказівником на член класу. Цей незвичайний вказівник задає зсув усередині об’єкту відповідного класу. Оскільки вказівники на члени класу не є вказівниками в звичайному сенсі слова до них не можна застосовувати операторів.
68948. Перевантаження операторів 40 KB
  Перевантаження скорочених операторів присвоєння Обмеження на перевантаження операторів З перевантаженням функцій тісно пов’язаний механізм перевантаження операторів. У мові C можна перенавантажувати більшість операторів набудувавши їх на конкретний клас.
68949. Перевантаження операторів new і delete 53.5 KB
  У мові C++ можна перенавантажувати операторів new і delete. Це доводиться робити, якщо виникає необхідність створити особливий механізм розподілу пам’яті. Наприклад, можна зажадати, щоб процедура розподілу пам’яті використовувала жорсткий диск як віртуальну пам’ять, якщо купа вичерпана.
68950. Перевантаження операторів [], () 49.5 KB
  Ці оператори також можна перенавантажувати, що породжує масу цікавих можливостей. На перевантаження цих операторів розповсюджується одне загальне обмеження: вони повинні бути нестатичними функціями-членами. Дружні функції застосовувати не можна.
68951. Деформация кристалла 142 KB
  Деформа́ция (от лат. deformatio — «искажение») — изменение взаимного положения частиц тела, связанное с их перемещением относительно друг друга. Деформация представляет собой результат изменения межатомных расстояний и перегруппировки блоков атомов.
68952. Наслідування. Доступ до членів класу 31.5 KB
  Наслідування — один з наріжних каменів обєктно-орієнтованого програмування, оскільки воно дозволяє створювати ієрархічні класифікації Використовуючи Наслідування, можна створювати загальні класи, що визначають властивості, характерні для всієї сукупності споріднених класів.