41943

Исследование колебаний вращающегося вала

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Теоретический расчет частот собственных колебаний вала и деформаций возникающих при его вращении. Экспериментальное определение прогибов вращающегося вала в различных схемах нагружения. Изза неточности изготовления и сборки центры масс деталей как правило не находятся на оси вращения вала т.

Русский

2013-10-26

214.31 KB

16 чел.

Лабораторная работа №3

Исследование колебаний вращающегося вала

Цель работы:

1.  Теоретический расчет частот собственных колебаний вала и деформаций, возникающих при его вращении.

2.  Экспериментальное определение прогибов вращающегося вала в различных схемах нагружения.

3.Сравнительный анализ результатов теоретических и экспериментальных исследований.

Введение

Разнообразное технологическое оборудование химических и пищевых производств имеет валы с закрепленными на них вращающимися деталями такими как роторы центрифуг и сепараторов, рабочие колеса центробежных насосов и компрессоров, диски резательных машин и молотковых дробилок, мешалки перемешивающих устройств, шкивы, зубчатые колеса.

Из-за неточности изготовления и сборки центры масс деталей, как правило, не находятся на оси вращения вала, т.е. всегда имеется остаточный дисбаланс.

При вращении вала вследствие дисбаланса возникают переменные по направлению силы инерции, дополнительно нагружающие вал и его опоры и вызывающие механические колебания системы. Под механическими колебаниями понимают многократное поочередное возрастание, и убывание во времени кинематических и динамических параметров, характеризующих техническую систему. Такие колебания проявляются в нарушении режима работы машин, что приводит к увеличению износа, повышению напряжений в деталях конструкции вплоть до их разрушения, ухудшению условий труда (возрастанию уровня шума и вибрационного воздействия на человека и окружающую среду). В связи с этим необходимо исследование колебаний вращающегося вала.

 

Теоретическая часть

Механические колебания, возбуждаемые в конструкциях различными периодически действующими силами, называются вынужденными, а внезапно приложенными силами - свободными. При анализе колебаний упругие системы принято различать по числу степеней свободы, т. е. по числу независимых координат, однозначно определяющих положение системы в любой момент времени.

При угловой скорости вала ωр, равной угловой частоте его собственных колебаний (ω1 или ω2 ) наступает явление резонанса и прогиб вала стремиться к бесконечности. Такая скорость называется критической. Валы машин, эксплуатируемые при скоростях меньших первой критической ( ωр ‹ ω1 ), называются жесткими; а валы работающие в закритической области (ωр › ω1) - гибкими. Для гибких валов характерно свойство самоцентрирования, выражающееся в уменьшении деформаций вала при возрастании его рабочей скорости.

В период разгона присутствуют вынужденные и свободные колебания. Это нестационарный режим работы вала. После выхода на заданную скорость собственные колебания, вследствие потерь энергии на трение о среду и в кинематических парах, быстро затухают. Устанавливается стационарный режим, при котором имеют место только прогибы, вызванные статической . неуравновешенностью вращающихся масс.

Описание экспериментальной установки

Экспериментальное определение амплитуды колебаний вращающегося вала производится на лабораторной установке, схема которой представлена на рис. 1. Установка включает в себя исследуемый вал 19, вращающийся в опорах 18, на котором закрепляются один или два диска 20 в зависимости от схемы нагружения вала. Измерение амплитуды колебаний вала осуществляется с помощью лимба 12, контактного щупа 16 и индикатора 15 с блоком питания 21. Лимб установлен на салазках 11, имеющих возможность перемещаться перпендикулярно к оси вала за счет передачи "винт-гайка". Эта поперечная подача осуществляется вращением маховика 13 и служит для установки фиксированного значения измерительного устройства. Направляющие салазок вместе с суппортом 1, могут двигаться вдоль оси исследуемого вала, что позволяет проводить замеры прогиба вала практически в любой его точке.

 

Рис. 1. Схема экспериментальной установки

Рис. 2. Расчетная схема пролетного вала постоянного сечения

Проверка на виброустойчивость

Безразмерный динамический прогиб

Приведенная масса диска

Масса единицы длины вала

Относительная суммарная масса диска

Безразмерная критическая угловая скорость

Первая частота вращения

Проверка вала на виброустойчивость выполнена

Проверка на жесткость

Относительная координата опасного сечения

Безразмерный динамический прогиб

Смещение вала за счет начальной изогнутости

Смещение оси вала в расчетных сечениях из-за зазоров в опорах

Приведенный эксцентриситет

Приведенная масса вала

Приведенный эксцентриситет массы вала с деталями

В установившемся режиме динамический прогиб оси вала в точке приведения можно найти по формуле

Смещение оси вала за счет динамического прогиба

При

При

При

Динамическое смещение вала

При

При

При

Проверка вала на прочность

Координаты опасных сечений

- диаметр вала;

Динамическое смещение центра масс диска

Динамическое смещение в точке В

Центробежная сила действующая на диск

Реакция опоры А

Реакция опоры В

Крутящий момент

Изгибающий момент

Эквивалентное напряжение

Запас прочности

Условие выполнено

АНАЛИЗ РЕЗУЛЬТАТОВ

В лабораторной работе были определены динамические смещения вала теоретически и экспериментально. Полученная погрешность находится в пределах 6,5 – 81,8%.

Также был проведен расчет вала на виброустойчивость, на жесткость и на прочность. В результате вал оказался пригоден для работы в данных условиях.

Вывод:

В результате работы были проверены:

  1. прогибы вращающегося вала
  2. произвели проверку на виброустойчивость, жесткость и прочность

Данный вал удовлетворяет всем этим условиям


 

А также другие работы, которые могут Вас заинтересовать

30129. Исследование методов позиционирования, а так же разработка устройства для дистанционного мониторинга технических объектов, транспортных средств и человека 873.95 KB
  Одним из основных компонентов системы позиционирования является устройство под названием GPSтрекер.4 Применение систем навигации Кроме навигации координаты получаемые благодаря спутниковым системам используются в следующих отраслях: Геодезия: с помощью систем навигации определяются точные координаты точек Картография: системы навигации используется в гражданской и военной картографии Навигация: с применением систем навигации осуществляется как морская так и дорожная навигация Спутниковый мониторинг транспорта: с помощью систем...
30130. Створення газети на тему «Молодь обирає спорт» у програмі Page Maker 639.28 KB
  Програма PageMaker є складовою частиною лінійки програмних продуктів фірми Adobe, до складу якої крім того входять Adobe Table, Adobe FrameMaker, Adobe PageMill, Adobe Photoshop, Adobe Illustrator, Adobe Streamline, Adobe Premier. Практично кожна з цих програм є світовим лідером в своїй області
30131. Создание управляющих программ с использованием сплайновой интерполяции типов AKIMA(ASPLINE), NURBS(BSPLINE) и кубического сплайна(CSPLINE). Воспроизведение сплайновой интерполяции в системе ЧПУ WinPCNC 184.33 KB
  Воспроизведение сплайновой интерполяции в системе ЧПУ WinPCNC Выполнил: студент гр. Ход Работы В процессе обучения будет рассмотрено использование сплайновой интерполяции на двух примерах. Будем использовать три основных типа сплайна: SPLINE kim сплайн BSPLINE NURBS сплайн CSPLINE кубический сплайн.
30132. Генерация и редактирование сплайн контуров. Создание и отработка управляющих программ 236.41 KB
  Полученную кривую можно сохранить в файле в формате txt, где будут записаны последовательности координат X и Y. Таким образом, с помощью программы можно не только просмотреть, как будет строиться та или иная кривая, но и использовать полученные оцифрованные точки в дальнейшем.
30133. Основы программирования в оболочке ОС UNIX 25.44 KB
  Пользователь имеет возможность присвоить переменной значение некоторой строки символов. Например команда mrk= usr ndy bin присваивает значение строки символов usr ndy bin переменной mrk типа строка символов . Для этого в соот ветствующем месте командной строки должно быть употреблено имя этой переменной которому предшествует метасимвол . Использование значения присвоенного некоторой переменной называется подстановкой.
30134. БАЗЫ ДАННЫХ 34.53 KB
  В начале работы следуют выбрать интересующего работника. После этого будут выведены данные о заданиях выбранного работника в соответствующую таблицу. При выборе конкретного задания выводятся данные о работниках.
30135. ИЗУЧЕНИЕ МОДЕЛЕЙ ВЗАИМОДЕЙСТВИЯ РАСПРЕДЕЛЕННО ВЫПОЛНЯЮЩИХСЯ ПРОЦЕССОВ 65.72 KB
  Осуществить построение топологии сети требуемого вида (рис. 3.1); выполнить широковещательную рассылку вводимого с клавиатуры сообщения от узла S на все остальные узлы. На узле, инициирующем рассылку, выводить (в виде матрицы) топологию сети и остовное дерево, на остальных хостах сети после получения сообщения выводить номер хоста и сам текст сообщения.
30136. Средства создания и сопровождения сайта 139.29 KB
  Подпись Дата Лист 2 КОГУ Проверил Бегун Э.контур утвердить Лит Листов КОГУ Лабораторная работа 9. Подпись Дата Лист 2 КОГУ Проверил Бегун Э.контур утвердить Лит Листов КОГУ создал hobby.
30137. Теория сплайнов. Параметры, влияющие на точность аппроксимации контура 3.81 MB
  SPLINE SPLINE kim spline проходит точно через заданные точки. Минимально допустимое количество точек определяется особенностями системы ЧПУ; например система ЧПУ Sinumerik позволяет построить кривые только через 6 смежных точек в то время как система ЧПУ WinPCNC через 4 точки в предельном случае можно использовать две точки но в этом случае кривая трактуется как отрезок прямой. Главная область применения этого типа сплайна прохождение через точки полученные от контрольноизмерительной машины КИМ или от аналогичных машин. В...