41977

Численное дифференцирование и интегрирование

Лабораторная работа

Математика и математический анализ

Вычислить интеграл по формуле прямоугольников используя для оценки точности двойной просчет при n1= 8 и n2=10. По формуле левых прямоугольников получим I1=h0126.72062243; По формуле правых прямоугольников находим I2=h 6.15576821; Работа 3 Задание: 1 Вычислить интеграл по формуле трапеций с тремя десятичными знаками.

Русский

2013-10-26

1.37 MB

40 чел.

МІНІСТЕРСТВО ОСВІТИ І НАУКИ, МОЛОДІ ТА СПОРТУ УКРАЇНИ

ДВНЗ «КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ ЕКОНОМІЧНИЙ УНІВЕРСИТЕТ

імені В. Гетьмана»

КАФEДРА ІHФОРМАТИКИ

                                          

                                    

                                  

                                    

                      

          

Лабоpатоpна pобота №3,4

з дисципліни “Чисельні методи в інформатиці"

на тему: «Численное дифференцирование и интегрирование»

                

                                   

Виконав

Студент 2 куpсу

факультету ІСІТ                                                                                        

2 гpупи

Маштабєй В.С.

Пеpевіpив

Ігнатенко В.М.

Київ 2011

Работа 1

Задание: с помощью интерполяционных формул Ньютона, Гаусса, Стирлинга    и Бесселя найти значение первой и второй производных при данных значениях аргумента для функции, заданной таблично. 

Найти значения первой и второй производной данной функции при х1=3.65; х2=3.87; х3=3; х4=3,04; n=25. Составим диагональную таблицу конечных разностей данной функции.

x

y(x)

∆yi

2yi

3yi

4yi

2.400

3.526

0.256

-0.093

0.028

0.000

2.600

3.782

0.163

-0.065

0.028

-0.001

2.800

3.945

0.098

-0.037

0.027

-0.001

3.000

4.043

0.061

-0.010

0.026

0.000

3.200

4.104

0.051

0.016

0.026

-0.001

3.400

4.155

0.067

0.042

0.025

0.000

3.600

4.222

0.109

0.067

0.025

-0.001

3.800

4.331

0.176

0.092

0.024

0.000

4.000

4.507

0.268

0.116

0.024

-

4.200

4.775

0.384

0.140

-

-

4.400

5.159

0.524

-

-

-

4.600

5.683

-

-

-

-

Выбор полинома осуществляется исходя из требования получения

минимальной величины погрешности интерполяции и определяется величиной t.

  1.  Положим х0=3.6; тогда t=(x-x0)/h=(3.65-3.6)/0.2= 0.25

Если t=(x-x0)/h ≤ 0.25, то используем формулы

Получающимися из формулы Бесселя.

Находим

Y`(3.6)≈ 0.475573;

Y``(3.6) ≈1.20625;

  1.  Положим х0=3,8, тогда t =(x-x0)/h=(3.87-3.8)/0.2= 0.35

Таким образом получаем, что 0,25 ≤ |t| ≤ 0,75. В этом случае используем формулы

Получающимися из формулы Бесселя.

Находим

Y`(3,8) ≈ 0.816573;

Y``(3.8) ≈ 1.893750;

  1.  Положим х0=3.0, тогда t =(x-x0)/h=(3,0-3,0)/0,2=0. Воспользуемся для вычислений формулами

Получающимися из первой интерполяционной формулы Ньютона.

Находим

Y`(3,0)≈ 0.373333;

Y``(3,0) ≈-0.9;

  1.  Положим х0=3,04, тогда t =(x-x0)/h=(3,04-3,0)/0,2= 0.2

Если t=(x-x0)/h ≤ 0.25, то используем формулы

Получающимися из формулы Бесселя.

Находим

Y`(3,04)≈ 0.436408;

Y``(3,04) ≈ 1.127;

Работа 2

Задание: 1) Вычислить интеграл по формулам левых и правых прямоугольников при n=10, оценивая сравнения полученных результатов.

2) Вычислить интеграл по формуле прямоугольников, используя для оценки точности двойной просчет при n1= 8 и n2=10.

1) Для вычисления по формулам левых и правых прямоугольников при n=10 разобьем отрезок интегрирования на 10 частей с шагом h=(b-a)/n=(2.2-1)/10=0.12

Составим таблицу значений подынтегральной функции в точках деления отрезка:

0

1

2.800000

1.673320

1.449138

3.049138

0.548785

1

1.12

3.003520

1.733067

1.509967

3.109967

0.557262

2

1.24

3.230080

1.797242

1.568439

3.168439

0.567233

3

1.36

3.479680

1.865390

1.624808

3.224808

0.578450

4

1.48

3.752320

1.937091

1.679286

3.279286

0.590705

5

1.6

4.048000

2.011964

1.732051

3.332051

0.603822

6

1.72

4.366720

2.089670

1.783255

3.383255

0.617651

7

1.84

4.708480

2.169903

1.833030

3.433030

0.632066

8

1.96

5.073280

2.252394

1.881489

3.481489

0.646963

9

2.08

5.461120

2.336904

1.928730

3.528730

0.662251

10

2.2

5.872000

2.423221

1.974842

3.574842

0.677854

6.005187;

6.134256;

Найдем приближенные значения интеграла. По формуле левых прямоугольников получим

I1=h*0,12*6.005187=0.72062243;

По формуле правых прямоугольников находим

I2=h* 6.134256= 0.73611076;

Эти результаты отличаются уже в сотых долях. За окончательное значение примем полусумму найденных значений, округлив результат до тысячных:

I=( I1+ I2)/2= 0.72836659;

2) Для решения воспользуемся формулой средних прямоугольников

Вычисления выполним дважды при n1= 8 и n2=10 и соответственно при h1=(b-a)/n1=(1-0.6)/8=0,05 и h2=(b-a)/n2=(1-0.6)/10=0,04. Результаты вычислений приведены в таблицах.

0

0.6

0.625000

0.963558

2.124836011

0.283421

1

0.65

0.675000

0.975723

2.103845316

0.313052

2

0.7

0.725000

0.985450

2.082221207

0.343120

3

0.75

0.775000

0.992713

2.059983146

0.373475

4

0.8

0.825000

0.997495

2.037151144

0.403963

5

0.85

0.875000

0.999784

2.013745749

0.434420

6

0.9

0.925000

0.999574

1.989788025

0.464675

7

0.95

0.975000

0.996865

1.965299531

0.494552

 

 

 

 

              

3.110679

Таблица 2

0

0.6

0.620000

0.963558185

2.124836011

0.281154

1

0.64

0.660000

0.973484542

2.108094741

0.304777

2

0.68

0.700000

0.98185353

2.090945627

0.328702

3

0.72

0.740000

0.988651763

2.073398549

0.352852

4

0.76

0.780000

0.993868363

2.055463611

0.37715

5

0.8

0.820000

0.997494987

2.037151144

0.401515

6

0.84

0.860000

0.999525831

2.018471696

0.425863

7

0.88

0.900000

0.999957646

1.999436025

0.450108

8

0.92

0.940000

0.998789743

1.980055096

0.47416

9

0.96

0.980000

0.99602399

1.960340071

0.497926

 

 

 

 

                     

3.894205

I1=h1*0,05*3.110679=0.15553393;

I2=h2*0,04*3.894205=0.15576821;

Значения различаются в тысячных долях, но второе значение точнее второго, потому принимаем I≈0.15576821;

Работа 3

Задание: 1) Вычислить интеграл по формуле трапеций с тремя десятичными знаками.

2) Вычислить интеграл по формуле Симпсона при n=8; оценить погрешность результатов, составив таблицу конечных разностей.

1)  Для достижения заданной степени точности необходимо определить значение n так, чтобы

((b-a)3/12n2)*M2< 0.0005

Здесь а=0,6; b=1,4; M2maxf``(x)│, где f(x)=   

Находим

f`(x)=, f ``(x)=

max[0.6;1.4] f``(x)│< ≈ 1482.489

Положим M2 =1483, тогда неравенство примет вид ((1,4-0,6)3*1483)/12n2 <0.0005, откуда

n2 >63,27, т.е. n>8, возьмем n=10.

Вычисление интеграла производим по формуле

 

Где h=(b-a)/n=(1,4-0,6)/10=0,08, yi=y(xi)=1/; xi=0.6+ih (i=0,1,2,…,10)

Таблица 1

0

0.6

0.36

3.82

1.954482029

0.511645

 

1

0.68

0.4624

5.0488

2.246953493

 

0.445047

2

0.76

0.5776

6.4312

2.535981072

 

0.394325

3

0.84

0.7056

7.9672

2.822622894

 

0.35428

4

0.92

0.8464

9.6568

3.107539219

 

0.321798

5

1

1

11.5

3.391164992

 

0.294884

6

1.08

1.1664

13.4968

3.673799124

 

0.272198

7

1.16

1.3456

15.6472

3.955654181

 

0.252803

8

1.24

1.5376

17.9512

4.236885649

 

0.236022

9

1.32

1.7424

20.4088

4.517609988

 

0.221356

10

1.4

1.96

23.02

4.797916214

0.208424

 

 

 

 

 

 

0.720068

2.792713

Таким образом

I=0,08(0,720068/2 +2,792713)=0,25222

2) Согласно условию n=8, поэтому h=(b-a)/n=(2,8-1,2)/8=0,2. Вычислительная формула имеет вид

Где yi =y(xi)=

xi=1.2+ih (i=0,1…,8)

Вычисление значений функции, а также сложение значений функции, имеющих одинаковые коэффициенты в формуле, производим в табл.2.

Таблица 2

0

1.2

2.44

0.38739

1.4

1.742857

 

 

1

1.4

2.96

0.471292

1.8

 

1.644444444

 

2

1.6

3.56

0.55145

2.2

 

 

1.618181818

3

1.8

4.24

0.627366

2.6

 

1.630769231

 

4

2

5

0.69897

3

 

 

1.666666667

5

2.2

5.84

0.766413

3.4

 

1.717647059

 

6

2.4

6.76

0.829947

3.8

 

 

1.778947368

7

2.6

7.76

0.889862

4.2

 

1.847619048

 

8

2.8

8.84

0.946452

4.6

1.921739

 

 

 

 

 

 

 

3.664596

6.840479782

5.063795853

Следовательно

I=0,02/3*(3.664596+4*6.840479782+2*5.063795853)= 2.7436071≈ 2.7436

Для оценки точности полученного результата составим таблицу конечных разностей функций до разностей четвертого порядка (табл.3).

i

yi

∆ yi

∆2 yi

∆3 yi

∆4 yi

0

1.742857

-0.098413

0.07215

-0.033299891

0.01776

1

1.644444

-0.026263

0.03885

-0.015540016

0.007313

2

1.618182

0.0125874

0.02331

-0.008227067

0.003464

3

1.630769

0.0358974

0.015083

-0.004763039

0.001814

4

1.666667

0.0509804

0.01032

-0.002948546

0.001025

5

1.717647

0.0613003

0.007371

-0.001923099

 

6

1.778947

0.0686717

0.005448

 

 

7

1.847619

0.07412

 

 

 

8

1.921739

 

 

 

 

Так как max│ ∆4yi│= 0,01776, то остаточный член формулы

Rост<≈≈0.000157867;


Работа 4

Задание: Найти приближенное значение интеграла по формуле «трех восьмых», используя для контроля точности вычислений двойной просчет при n1= 9 и n2= 12.

Воспользуемся формулой «трех восьмых», выражающей данный интеграл через суммы значений подынтегральной функции.

  1.  n1= 9; h=(2,9-1,1)/9= 0,2

Запишем вычисления в таблице

i

xi

1+0,4x^2

sqrt(1.1x^2+1.2)

0.7+sqrt(1.1x^2+1.2)

y0,9

y1,2,4,5,7,8

y3,6

0

1.1

1.484

1.590911688

2.290911688

0.647777

 

 

1

1.3

1.676

1.748999714

2.448999714

 

0.684361

 

2

1.5

1.9

1.917028951

2.617028951

 

0.726014

 

3

1.7

2.156

2.092606031

2.792606031

 

 

0.772039

4

1.9

2.444

2.273983289

2.973983289

 

0.821793

 

5

2.1

2.764

2.459878046

3.159878046

 

0.874717

 

6

2.3

3.116

2.64933954

3.34933954

 

 

0.930333

7

2.5

3.5

2.841654448

3.541654448

 

0.988239

 

8

2.7

3.916

3.036280619

3.736280619

 

1.048101

 

9

2.9

4.364

3.232800643

3.932800643

1.109642

 

 

 

 

 

 

 

1.757419

5.143226

1.702371

I1=((3*0.2)/8)()= 4.118367796;

2) n1= 9; h=(2,56-0,4)/12= 0,18

Составим таблицу

i

xi

1+0,4x^2

sqrt(1.1x^2+1.2)

0.7+sqrt(1.1x^2+1.2)

y0,12

y1,2,4,5,7,8,10,11,8

y3,6,9

0

1.1

1.484

1.590911688

2.290911688

0.647777

 

 

1

1.25

1.625

1.708434956

2.408434956

 

0.674712014

 

2

1.4

1.784

1.831938864

2.531938864

 

0.704598371

 

3

1.55

1.961

1.960293345

2.660293345

 

 

0.737137

4

1.7

2.156

2.092606031

2.792606031

 

0.772038725

 

5

1.85

2.369

2.228171896

2.928171896

 

0.809037203

 

6

2

2.6

2.366431913

3.066431913

 

 

0.847891

7

2.15

2.849

2.506940366

3.206940366

 

0.888385712

 

8

2.3

3.116

2.64933954

3.34933954

 

0.930332671

 

9

2.45

3.401

2.793340294

3.493340294

 

0.973567

10

2.6

3.704

2.938707199

3.638707199

 

1.017943956

 

11

2.75

4.025

3.085247154

3.785247154

 

1.063338756

 

12

2.9

4.364

3.232800643

3.932800643

1.109642

 

 

 

 

 

 

 

1.757419

6.860387408

2.558595

I2=(3*0,24/8)*(= 4.118365513;

Полученные результаты совпадают полностью, поэтому принимаем

I ≈4.118367796;


 

А также другие работы, которые могут Вас заинтересовать

21726. Накопители на жестких магнитных дисках 116 KB
  1 БУСД блок управления 3х фазным синхронным двигателем шпинделя; И инвертор; СД синхронный двигатель; БП блок питания; ВК внутренний контроллер БУП блок управления позиционированием головки; ОЗУ оперативное запоминающее устройство ВК; см сервометка; ДПГ датчик позиционирования головки. Кроме того он дает разрешение на выпуск головки при достижении минимальной скорости вращения. Для записи и считывания используются магнитные головки представляющие собой катушки индуктивности которые выполняются по тонкопленочной технологии....
21727. Устройства массовой памяти на сменных носителях 180 KB
  Устройства массовой памяти на сменных носителях Вопросы: Магнитооптические диски. Оптические диски CD DVD PD. Эти устройства подключаются к компьютеру с помощью следующих интерфейсов: АТА SCSI USB Наибольшей популярностью пользуются в настоящее время CD DVD и магнитооптические диски. Магнитооптические диски.
21728. Аудио система персонального компьютера 245.5 KB
  Собственно цифровые каналы звуковой карты проходят через интерфейсные схемы например MIDI от шины расширения до ЦАП и от АЦП обратно к шине. На этих картах располагается и порт традиционного MIDI. Интерфейс MIDI Цифровой интерфейс музыкальных инструментов MIDI Musical Instrument Digital Interface является последовательным асинхронным интерфейсом с частотой передачи 3125 Кбит с. В настоящее время интерфейс MIDI имеют и дорогие синтезаторы и дешевые музыкальные клавиатуры пригодные в качестве устройств ввода компьютера.
21729. Коммуникационные устройства 306.5 KB
  Обмен данными требуется для различных целей: передачи файлов совместного использования периферийных устройств например принтеров доступа к разнообразным информационным услугам Интернета и частных сетей приема и передачи факсимильных сообщений посылки сообщений на пейджеры и мобильные телефоны установление голосовой связи IPтелефония видеосвязи и даже совместных игр по сети. СОМпорт Последовательный интерфейс для передачи данных в одном направлении использует одну сигнальную линию по которой информационные биты передаются друг за...
21730. Беспроводные интерфейсы связи 575 KB
  Инфракрасный интерфейс IrDA 2. В беспроводных интерфейсах используются электромагнитные волны инфракрасного IrDA Infrared Data Association и радиочастотного Blue Tooth диапазонов. Инфракрасный интерфейс IrDA 1. Общая характеристика IrDA Применение излучателей и приемников инфракрасного ИК диапазона позволяет осуществлять беспроводную связь между парой устройств удаленных на расстояние нескольких метров.
21731. Общая характеристика периферийных устройств ЭВМ 68.5 KB
  Общая характеристика периферийных устройств ЭВМ Вопросы: Введение в дисциплину периферийные устройства ПУ ЭВМ. Введение в дисциплину периферийные устройства ПУ ЭВМ. Как известно совместимый IBM PC компьютер организован по фоннеймановской архитектуре которая была сформулирована Джорджем фон Нейманом еще в 1945году и имеет следующие принципы: ЭВМ состоит из блока управления БУ и арифметикологического устройства АЛУ. Согласно этой архитектуры ЭВМ можно условно разделить на устройства непосредственной обработки информации и...
21732. Клавиатура. Манипуляторы-указатели 103 KB
  Вопросы: Общая характеристика клавиатуры. Интерфейс клавиатуры и мыши.Общая характеристика клавиатуры. Емкостные датчики и датчики Холла не имеют подвижных контактов и являются наиболее надежными для клавиатуры.
21733. Принципы вывода изображений 209 KB
  Принципы организации видеопамяти. Такой способ отображения называется линейным линейной последовательности пикселов соответствует линейная последовательность бит или групп бит видеопамяти. Многослойное отображение пикселов памяти Таким образом объем видеопамяти в битах V требуемый для хранения образа экрана определяется как произведение количества пикселов p в строке на количество строк n и на количество бит на пиксел b. Если физический объем видеопамяти превышает объем необходимый для отображения матрицы всего экрана видеопамять...
21734. Обработка видеоизображений 128.5 KB
  Стандарты кодеков изображений MPEG. Более совершенные устройства позволяют записывать в реальном времени последовательность видеокадров выполняя их сжатие методами MJPEG DVI или INDEO MPEGкодирование требует слишком больших ресурсов для выполнения преобразования в реальном времени. MPEG ряд кодеков MPEG1 MPEG2 MPEG4 MPEG7. Стандарты кодеков изображений MPEG.