42052

Изучение принципа измерения температуры при помощи термометра сопротивления

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Изучение принципа действия и конструкции термопреобразователей сопротивления и вторичных приборов работающих в комплекте с термопреобразователями сопротивления. Закрепление знаний по разделу Измерение температуры при помощи термометров сопротивления теоретического курса Технические измерения и приборы.1 Термопреобразователи сопротивления Измерение температуры термопреобразователями сопротивления основано на свойстве металлов и полупроводников изменять свое электрическое сопротивление с изменением температуры.

Русский

2013-10-27

128.5 KB

8 чел.

PAGE  6

Федеральное агентство по образованию

Пермский государственный технический университет

Березниковский филиал

Кафедра Автоматизации Технологических Процессов

Лабораторная работа

По курсу: «Технические измерения и приборы»

Тема: Изучение принципа измерения температуры при помощи термометра сопротивления.

       Выполнили: студенты  группы АТП-05у           Панасенко В.С.

                                                 Бакунов А.Н.

                                                                                

                                                                                

                  Проверил: ст. преподаватель                        Краев С.Л.

                                                                   «_____»________________2007г.

 

Березники,2007г.

1.  Цель работы.

Изучение принципа действия и конструкции термопреобразователей сопротивления и вторичных приборов, работающих в комплекте с термопреобразователями сопротивления. Закрепление знаний по разделу «Измерение температуры при помощи термометров сопротивления» теоретического курса «Технические измерения и приборы».

2.   Краткое описание средств измерения и оборудования.

2.1 Термопреобразователи сопротивления

Измерение температуры термопреобразователями сопротивления основано на свойстве металлов и полупроводников изменять свое электрическое сопротивление с изменением температуры. Если известна зависимость между электрическим сопротивлением Rt термопреобразователя сопротивления и его температурой t то, измерив Rt, можно определить значение температуры среды, в которую он погружен. Зависимость Rt=f(t) называется градуировочной характеристикой.

Термопреобразователи позволяют надежно измерять температуру в пределах от —260 до +1100°С. К металлическим проводникам термопреобразователей сопротивления предъявляется ряд требований, основными из которых являются стабильность градуировочной характеристики, а также ее воспроизводимость, обеспечивающая взаимозаменяемость изготовляемых термопреобразователей сопротивления. К числу не основных, но желательных требований относятся: линейность функции Rt=f(t), по возможности высокое значение температурного коэффициента электрического сопротивления

большое удельное сопротивление и невысокая стоимость материала.

Чем чище металл, тем в большей степени он отвечает указанным основным требованиям и тем больше значения отношения  

R100/R0  и α.

 где R0 и  R100 — электрические сопротивления металла при 0 и 100°С соответственно.

Поэтому степень чистоты металла, а также наличие в нем механических напряжений, принято характеризовать значениями W100=R100/R0 и α.

Изменение сопротивления материала с изменением температуры от 0 до 100°С характеризуется коэффициентом α0,100=((R100R0)/R0)100.
Металлы имеют положительный температурный коэффициент сопротивления. Для большинства чистых металлов он равен 4*10
-3—б*10-3  0С-1, что составляет увеличение электрического сопротивления при повышении температуры на один градус примерно на 0,4—0,6% от сопротивления при 0°С. Для изготовления стандартизованных термопреоразователей сопротивления в настоящее время применяют платину и медь.

Платина является наилучшим материалом для термопреобразователей сопротивления, так как легко получается в чистом виде, обладает хорошей воспроизводимостью, химически инертна в окислительной среде при высоких температурах, имеет достаточно большой температурный коэффициент сопротивления, равный 3,94*10-3  0С-1, и высокое удельное сопротивление 0.1*10-6 Ом*м. Платиновые преобразователи сопротивления используются для измерения температуры от —260 до + 1100°С, при этом для диапазона температур от —260 до +750°С используются платиновые проволоки диаметром 0,05-0,1 мм, а для измерения температур до 1100°С, в силу распыления платины при этих температурах, диаметр проволоки составляет около 0,5мм. Значение отношения W100=R100/R0 для применяемых платиновых проволок составляет 1,3850—1,3910.

Платиновые термопреобразователи сопротивления являются наиболее точными первичными преобразователями в диапазоне температур, где они могут быть использованы. Платиновые термопреобразователи сопротивления используются в качестве рабочих, образцовых и эталонных термометров. С помощью последних осуществляется воспроизведение международной шкалы температур в диапазоне от —182,97 до 630,5 °С.

Недостатком платины является нелинейность функции Rt=f(t)и, кроме того, платина — очень дорогой металл.

Медь — один из недорогостоящих металлов, легко получаемых в чистом виде. Медные термопреобразователи сопротивлений предназначены для измерения температуры в диапазоне от —50 до +200°С. При более высоких температурах медь активно окисляется и потому не используется. Диаметр медной проволоки обычно 0,1 мм, а значение отношения W100=R100/R0 составляет 1,4260— 1,4280. В широком диапазоне температур зависимость сопротивления от температуры линейна и имеет вид    Rt=R0(l + at), где к = 4,26*10-3   0С-1.

Никель и железо благодаря своим относительно высоким температурным коэффициентам электрического сопротивления и сравнительно большим сопротивлениям хотя и используются для измерения температуры в диапазоне от —50 до +250°С, однако широко не применяются. Это связано с тем, что градуировочная характеристика их нелинейна, а главное, не стабильна и не воспроизводима, и потому термопреобразователи сопротивления, изготовленные из этих металлов, не стандартизованы.

Конструкция технических термометров с металлическим термопреобразователем сопротивления показана на рис. 1.

Тонкая проволока или лента из платины или меди наматывается бифилярно на каркас 2 из керамики, слюды, кварца, стекла или пластмассы. Бифилярная намотка необходима для исключения индуктивного сопротивления. После намотки обычно неизолированной платиновой проволоки каркас вместе с проволокой покрывают слюдой. Длина намотанной части каркаса с платиновой проволокой 50-100 мм, а с медной — 40 мм. Каркас для защиты от повреждений помещают в тонкостенную алюминиевую гильзу 3, а для улучшения теплопередачи от измеряемой среды к намотанной части каркаса между последней и защитной гильзой 3 устанавливаются  упругие металлические пластинки 4 или массивный металлический вкладыш. Помимо наматываемого проволокой каркаса используются  двух- и четырехканальные      керамические    каркасы. В каналах размещают проволочные платиновые спирали, которые фиксируются в каналах каркаса с помощью термоцемента на основе оксида алюминия и кремния.

       При изготовлении медных термопреобразователей сопротивления применяют безындукционную бескаркасную намотку. В качестве материала используют изолированную медную проволоку диаметром 0,08 мм, покрытую фторопластовой пленкой.

      Гильзу 3 с ее содержимым помещают во внешний, обычно      стальной, замкнутый чехол 5, который устанавливается на объекте измерения с помощью штуцера 6.

Рис.1 Конструкция термометра сопротивления с  металлическим термопреобразова-телем

На внешней стороне чехла располагается соединительная головка 8, в которой находится изоляционная колодка 7 с винтами для крепления выводных проводов, идущих от каркаса через изоляционные бусы.

Термопреобразователи сопротивления выпускаются следующих исполнений: погружаемые и поверхностные; стационарные и переносные; негерметичные и герметичные; обыкновенные, пылезащищенные, водозащищенные, взрывобезопасные, защищенные от агрессивных сред и других внешних воздействий; малоинерционные, средней и большой инерционности; обыкновенные и виброустойчивые; одинарные и двойные; IIII классов точности; с двумя — четырьмя выводами.

Выпускаются термопреобразователи сопротивления следующих номинальных статических характеристик преобразования (градуировок): платиновые— 1П, 5П, 10П, 50П, 100П, 500П; медные—10М, 50М, 100М. Число в условном обозначении характеристики показывает сопротивление термопреобразователя при 0°С(R0). Буква «П» или «М» указывает на применяемый материал - соответственно платина или медь. Основные характеристики термопреобразователей сопротивления даны в таблице 1.1

Тип  термо-метра сопротив-ления

Приме-няемый материал

Диапазон

температур,

0С

Градуировка

(НСХ)

Сопротивле-ние термопре-образователя  при 0°С(R0)

Ом

ТСП

платина

260…11000С

1

1,3850—1,3910

5

10П

10

50П

50

100П

100

500П

500

Гр.20*

10

Гр. 21*

46

Гр. 22*

ТСМ

медь

-501800С

10М

10

1,4260— 1,4280

50М

50

100М

100

Гр.23 *

53

Гр.24*

                      Таблица 1.1

* - градуировки являются устаревшими

Полупроводниковые термопреобразователи сопротивления применяются для измерения температуры от —100 до 300 °С. В качестве материалов для них используются различные полупроводниковые вещества — оксиды магния, кобальта, марганца, титана, меди, кристаллы германия.

Основным преимуществом полупроводников является их большой отрицательный температурный коэффициент сопротивления. При повышении температуры полупроводников на один градус их сопротивление уменьшается на 3—5%, что делает их очень чувствительным к изменению температуры. Кроме того, они обладают значительным удельным сопротивлением и потому даже при очень малых размерах обладают значительным номинальным электрическим сопротивлением (от нескольких до сотен килоом), что позволяет не учитывать сопротивления соединительных проводов и элементов измерительной схемы.

Недостатком полупроводниковых материалов является их значительная нелинейность и, главное, невоспроизводимость градуировочной характеристики. Поэтому полупроводниковые термопреобразователи сопротивления даже одного и того же типа имеют индивидуальные градуировки и не взаимозаменяемы.

Исключением являются германиевые термопреобразователи сопротивления, которые при технических измерениях используются для температур 30—90 К с погрешностью ±(0,05—0,1) К, а также специальный германиевый термопреобразователь, предназначенный в качестве эталонного термометра для воспроизведения температурной шкалы в интервале 4,2—13,81 К с погрешностью не более ±0,001 К.

Чувствительные элементы из полупроводников выполняются в виде цилиндров, шайб, бусинок малых размеров.

В силу указанных недостатков полупроводниковые термопреобразователи сопротивления редко используются для измерения температуры. Они находят широкое применение в системах температурной сигнализации, вследствие присущего им релейного эффекта — скачкообразного изменения сопротивления при достижении определенной температуры. Кроме того, полупроводниковые термопреобразователи сопротивления используются в качестве чувствительных элементов в различных газоаналитических автоматических приборах.

2.2  Вторичные приборы, работающие в комплекте с термопреобразователями   сопротивления

2.2.1 Автоматический    мост

Рис.1.3. Принципиальная схема автоматического уравновешенного моста

В данном методе используются мостовые измерительные схемы уравновешенного вида. В автоматических уравновешенных мостах применяется измерительная схема четырехплечевого моста с реохордом, включенным таким образом, что его движок может изменять положение точки подключения одной из вершин измеряемой диагонали по отношению к двум прилежащим плечам моста. На рис. 1.3 приведена принципиальная схема автоматического уравновешенного моста в комплекте с ТС Rt, включенного по трехпроводной схеме.

           Условие равновесия мостовой (измерительной) схемы – равенство произведений противолежащих плеч:

RAC * RBD = RAD * RBC

  При этом в измерительной диагонали АВ разность потенциалов равна нулю.

В основу работы схемы положен нулевой метод измерения сопротивления.

Конструктивное исполнение основано на блочно-модульном принципе построения. Блоки расположены на выдвижных или поворотных кронштейнах, что обеспечивает свободный доступ к блокам, возможность обслуживания, монтажа и демонтажа любого элемента при переналадке или ремонте. Блоки и модули электрически соединяются между собой штепсельными разъемами. Такая конструкция обеспечивает высокую ремонтопригодность.

Для намотки спиралей реохордов используется проволока из палладий- вольфрамового сплава ПдВ-20, что повышает коррозийную стойкость спиралей, стабильность сопротивлений, стойкость к износу. Однотипные реохорды взаимозаменяемы.

  1.  Измерительная схема.

          

Рис. 2.2 Подключение магазина сопротивлений МСР-63 к автоматическому мосту КСМ-3

  1.  Выводы по работе.

  Изучили принцип действия и конструкции термопреобразователей сопротивления и вторичных приборов, работающих в комплекте с термопреобразователями сопротивления. 


 

А также другие работы, которые могут Вас заинтересовать

10989. Newton Interpolating Polynomial 76.5 KB
  Newton Interpolating Polynomial Case 1: Constant Polynomial Only one xvalue is given in the table X x1 Y y1 Let P0x be the interpolating polynomial function. Hence P0x1 = y1. It passes through the one point x1y1 given in the table. Hence choose 6.1 Case 2: Linear Polynomial Two xvalues are given in the table ...
10990. Spline Interpolation 87.5 KB
  Spline Interpolation In the previous sections n – 1th – order polynomials were used to interpolate between n date points. For example for eight points we can derive a perfect seventh – order polynomial. This curve would capture all the meanderings at least up to and including seventh derivatives suggested by the points. However there are cases where these functions can lead to erroneous results because of roundoff error and overshoot. An alternative approach is to apply low...
10991. Numerical Integration 156.5 KB
  2. Numerical Integration 2.1. Introduction Numerical integration which is also called quadrature has a history extending back to the invention of calculus and before. The fact that integrals of elementary functions could not in general be computed analytically while derivatives could be served to give the field a certain panache and to set it a cut above the arithmetic drudgery of numerical analysis during the whole of the 18th and 19th centuries. With the invention of automa...
10992. Extended Formulas (Closed) 145 KB
  Extended Formulas Closed If we use equation 2.5 N – 1 times to do the integration in the intervals x1; x2; x2; x3; xN 1; xN and then add the results we obtain an extendedr or compositer formula for the integral from x1 to xN. Extended trapezoidal rule: In this method the area under the curve is approximated by sums of trapezoids areas under the curve see Fig. 2.3.. Figure 2.3. Extended trapezoidal rule. Trapezoid formul...
10993. Solution of Linear Algebraic Equations 132.5 KB
  Lesson 6 3. Solution of Linear Algebraic Equations 3.1. Introduction A set of linear algebraic equations looks like this: 3.1 Here the n unknowns xj j = 1 2 n are related by m equations. The coefficients aij with i = 1 2 m and j = 1 2 n are known numbers as are the righthand side quantities bi i = 1 2 m. If n = m then there are as many equations as unknowns and there is a good chance of solving for a unique solution...
10994. Проблема истины. Аргументы агностицизма 69 KB
  Проблема истины Способно ли человеческое познание в том числе и научное приводить к истине Автоматически ответить на этот вопрос положительно философия не может поскольку за тысячелетия ее существования было сформулировано немало аргументов выражавших на сей счет ...
10995. Культура и цивилизация, содержание и закономерности развития культуры 127.5 KB
  Культура и цивилизация Понятиями культура и цивилизация обозначены чрезвычайно важные точки роста на нескончаемой нити человеческого познания. Феномены культуры и цивилизации стремительно преображают окружающую среду оцениваются как факторы творческого жизнеустр
10996. Глобальные проблемы современности, Стимулы и потенциалы общественного развития 56 KB
  Глобальные проблемы современности. Современная глобальная ситуация. Политические экологические демографические экономические проблемы. Стимулы и потенциалы общественного развития. Глобальные проблемы современности являются самой актуальной тем
10997. Философия и мировоззрение. Типы мировоззрений 28 KB
  Философия и мировоззрение. Мировоззрение– это сложное синтетическое интегральное образование общественного и индивидуального сознания. В нем присутствуют различные компоненты: знания убеждения верования настроения стремления ценности нормы идеалы и т.д. Мирово