42144

ОПРЕДЕЛЕНИЕ ЭЛЕКТРОДВИЖУЩЕЙ СИЛЫ МЕТОДОМ КОМПЕНСАЦИИ

Лабораторная работа

Физика

Для существования стационарного тока в цепи необходим какой-нибудь источник энергии электродвижущей силы ЭДС который способен поддерживать электрическое поле. В источнике ЭДС перемещение носителей заряда производится с помощью запасенной энергии. Рассмотрим замкнутую цепь состоящую из источника ЭДС и нагрузки внешней цепи. Таким образом ЭДС это физическая величина численно равная работе сторонних сил по перемещению единичного положительного заряда по замкнутой цепи.

Русский

2013-10-27

51 KB

21 чел.

ЛАБОРАТОРНАЯ РАБОТА  № 3 – 1

ОПРЕДЕЛЕНИЕ ЭЛЕКТРОДВИЖУЩЕЙ СИЛЫ                                         МЕТОДОМ КОМПЕНСАЦИИ

         Цель работы  изучить компенсационный метод измерения электродвижущей силы источника тока.

ПОСТАНОВКА  ЗАДАЧИ

Для существования стационарного тока в цепи необходим какой-нибудь источник энергии (электродвижущей силы  - ЭДС),  который способен поддерживать электрическое поле. В источнике ЭДС перемещение носителей заряда производится с помощью запасенной энергии. Например, в аккумуляторе используется энергия химической реакции.

Рассмотрим замкнутую цепь, состоящую из источника ЭДС и нагрузки (внешней цепи). Перемещение зарядов во внешней части электрической цепи происходит под действием электростатических сил. Перемещение заряда внутри источника происходит против электростатических сил под действием сторонних сил. Заряд, вернувшись в первоначальную точку и совершив полный цикл по замкнутой цепи, не изменяет своей потенциальной энергии.

Согласно закону сохранения энергии, а также закону Джоуля-Ленца, сторонние силы за время t совершают работу

                                                А = W = I2Rt + I2rt,              (1)

где I  ток в цепи, R, r  сопротивления внешнего и внутреннего участков цепи, соответственно.

Так как перенесенный за время t заряд q = It, то

                                                А = W = q I R + q I r.    (2)

Работа по перенесению единичного заряда по замкнутой цепи численно равна

                                               E = .               (3)

И мы пришли к закону Ома для полной цепи.

 Таким образом, ЭДС это физическая величина, численно равная работе сторонних сил по перемещению единичного положительного заряда по замкнутой цепи.

Из уравнения (3) следует, что измеряемое напряжение во внешней цепи (падение напряжения) всегда меньше ЭДС:

U = I R = E  I r     (4)

Поэтому точное измерение ЭДС нельзя произвести обычным вольтметром, т. к. он требует наличия тока в цепи, а  измеренная им разность потенциалов будет равна U, то есть меньше, чем ЭДС. В тех случаях, когда внутреннее сопротивление вольтметра велико, ток в его цепи  мал. Тогда можно принять U  E.

В данной работе ЭДС измеряется компенсационным методом, при котором ток через источник ЭДС равен нулю. Определение неизвестной ЭДС производится путем сравнения ее с известной ЭДС эталонного источника с помощью компенсационной схемы.

.

ОПИСАНИЕ  ЛАБОРАТОРНОЙ  УСТАНОВКИ

Принципиальная схема установки для измерения ЭДС методом компенсации приведена на рис. 1.

 

                                                               

                                                                                                           

                                                                         

                                                                

                                                      

                                                     Рис. 1

         ЭДС блока питания E П больше ЭДС эталонного E Э и неизвестного E Х. Переключателем П и ключом К включим вначале источник ЭДС  E Э в цепь. Обозначим токи узла А: I1, I2, I. В соответствии с первым правилом Кирхгофа

I1 = I2 + I.      (5)

Обозначим сопротивление источника ЭДС E Э и гальванометра R0, а участка потенциометра АВ  RЭ.

Составим уравнение на основании второго правила Кирхгофа для контура, содержащего источник

                                                    R0I2  RЭI =  E Э                                  (6)

Так как  для точки  А:  I = I1  I2, то

R0I2  Rэ(I1  I2)=  E Э..    (7)

Перемещая контакт В потенциометра, можно добиться равенства нулю тока в цепи гальванометра, так как источник ЭДС E Э и блок питания соединены встречно (плюс к плюсу). При I2 = 0 выражение (7) принимает вид

                                             Rэ I1 = E Э.                          (8)

Таким образом, если падение напряжения на участке АВ равно ЭДС эталонного источника, подключенного встречно, то ЭДС скомпенсирована.

Теперь, вместо E Э включим неизвестный источник ЭДС E Х. Передвигая контакт В, снова добиваемся равенства нулю тока, идущего через гальванометр. Теперь положение контакта В будет иное, чем при источнике E Э, а сопротивление участка АВ будет иметь другое значение Rx. Очевидно, что в этом случае будет соблюдаться условие

Rх I1 = E Э.      (9)

Сила тока на участке АВ будет равна I1 и в первом, и во втором случае, так как ток в цепь гальванометра не поступает (I2 = 0), а ток в цепи блока питания определяется величиной его ЭДС и всем сопротивлением цепи.

Так как потенциометр изготовлен из однородного провода, то сопротивления отдельных его участков относятся как их длины

      и       

Поделив (9) на (8), получим

                                                    E Х = E Э .                       (10)

Выражение (10) является расчетной формулой для определения неизвестной ЭДС.

ПОРЯДОК  ВЫПОЛНЕНИЯ  РАБОТЫ

ВНИМАНИЕ!  При измерениях нельзя долго держать цепь под нагрузкой.

  1.  Соберите схему согласно рис. 1. После проверки преподавателем собранной схемы приступите к выполнению работы.

Движок потенциометра R поставьте в среднее положение шкалы.

Переключателем П включите источник ЭДС E Э.

Замыкайте ключ К и наблюдайте показания гальванометра. Перемещением движка скомпенсируйте ток в гальванометре до нуля.

По шкале потенциометра R определите длину Э.

Поставьте движок потенциометра в среднее положение.

Измерение ЭДС повторите 5 раз.

То же проделайте для измерения ЭДС E Х , сменив переключателем П источник ЭДС E Э на источник ЭДС E Х.

Результаты измерений запишите в таблицу.

Таблица

1

2

3

4

5

Э

Х

Выведите формулу для абсолютной и относительной ошибки измерений неизвестной ЭДС (см. «Введение в лабораторный практикум»).

Окончательный результат запишите в виде

E Х = < E Х > <  E Х >; = ; = .

КОНТРОЛЬНЫЕ  ВОПРОСЫ  И  ЗАДАНИЯ

  1.  В чем заключается сущность метода компенсации?

При каких условиях ток в гальванометре может быть сведен к нулю?

В чем сущность сторонних сил?

Выведите расчетную формулу для определения ЭДС методом компенсации.

Покажите, что, измеряя вольтметром ЭДС источника, мы допускаем большую ошибку.

Дайте определение ЭДС, потенциала, разности потенциалов, напряжения.

Сформулируйте закон Ома для полной цепи.

Сформулируйте первое и второе правило Кирхгофа.

Нарисуйте схему установки и объясните ее работу.

6


 +    -   
EЭ

К

G

   +    -  Ex

RЭ      В

I

  I2                  I1            E п                     

А


 

А также другие работы, которые могут Вас заинтересовать

30832. Внутренняя среда организма 33 KB
  Внутренняя среда организма Под внутренней средой организма понимают ту среду которая непосредственно не сообщается с окружающей средой и является микроокружением клеток человеческого организма т. Истинной внутренней средой организма является межклеточная жидкость. Внутренняя среда это среда в которой непосредственно живут клетки организма т. Еще в 18м веке знаменитый французский физиолог Клод Бернар сформулировал понятие гомеостаз постоянство внутренней среды организма.
30833. Приспособление к среде обитания, как важнейшее условие жизнедеятельности. Срочная и долговременная адаптация 27.5 KB
  Срочная и долговременная адаптация. Адаптация процесс приспособления организма к изменяющимся условиям среды обитания. При благоприятном стечении обстоятельств прекращении действия сверхсильного фактора или снижении его силы и интенсивности до уровня физиологического диапозона действия возможна деадаптация. Организм всегда оставляет след от неблагоприятного воздействия вегетативная память что облегчает приспособление при повторной адаптации реадаптация.
30834. Функции клеток 21.5 KB
  Раздражимость способность клетки отвечать на раздражение изменением своего обмена веществ. Возбудимость это способность клетки отвечать на раздражение изменением проницаемости клеточной мембраны входящим натриевым током и как следствие генерацией потенциала действия т. Проводимость это способность клетки проводить распространять возбуждение от места его возникновения в клетке к другим ее частям. Если у клетки утрачена раздражимость возбудимость или проводимость то она или функционально нарушена либо погибла т.
30835. Ионно-мембранная теория происхождения биоэлектрических явлений (Ходжкин, Хаксли, Катц). Электрические явления в возбудимых тканях (потенциал покоя, потенциал действия, токи градиента основного обмена, токи повреждения) 25 KB
  Электрические явления в возбудимых тканях потенциал покоя потенциал действия токи градиента основного обмена токи повреждения. Происхождение электрических явлений в тканях На уровне клетки регистрируется потенциал мембраны ПД разность потенциалов между наружной и внутренней поверхности мембраны в каждый данный момент времени. Стационарно как показатели электрического состояния клетки регистрируют 2 вида потенциала мембраны ПМ: потенциал покоя ПП и потенциал действия ПД. Потенциал покояПП это разность потенциалов между...
30836. Понятие о потенциале покоя. Роль ионов К+, Na+, Ca+2, Cl- в происхождении мембранного потенциала. Калий-натриевый насос, его значение. Уравнения Нернста и Гольдмана, расчет величины мембранного потенциала 23.5 KB
  в покое мембрана поляризована. Избирательная проницаемость клеточной мембраны в покое для натрия и калия. В покое высокая проницаемость для калия а для натрия в покое она практически отсутствует небольшая. В покое за счет процесса облегченной диффузии через неуправляемые медленные калиевые каналы за счет градиента концентрации калий постоянно выходит из клетки во внеклеточное пространство это формирует постоянный выходящий калиевый ток.
30837. Потенциал действия и его фазы. Изменение проницаемости калиевых, натриевых и кальциевых каналов в процессе формирования потенциала действия 30 KB
  При нанесении раздражения увеличивается проницаемость мембраны для натрия. За счет этого процесса происходит уменьшение полярности мембраны по сравнению с исходным с 70 мВ до 4050 мВ. Критический уровень деполяризации КУД это такая величина разности потенциалов 4050 мВ при которой активируется большое количество потенциалзависимых быстрых натриевых каналов проницаемость мембраны для натрия становится максимальной и перестает быть зависимой от силы раздражителя. Возникает лавинообразный входящий натриевый ток который быстро доли...
30838. Раздражимость и возбудимость 44 KB
  По биологической значимости: адекватные присущи для восприятия данному виду рецептора неадекватные не являются естественными с точки зрения природы или силы раздражения. Законы раздражения Действие раздражителя описывается несколькими законами: 1. Закон силы раздражения: Чем больше сила раздражения тем до известных пределов сильнее ответная реакция. Но есть сила раздражения для любого биологического раздражителя которая способна вызывать mx эффект оптимальная сила оптимум частоты и силы раздражения.
30839. Действие постоянного тока 29.5 KB
  Под катодом замыкая цепь мы по существу вносим мощный отрицательный заряд на наружную поверхность мембраны. Это приводит к развитию процесса деполяризации мембраны под катодом. При замыкании цепи происходит внесение мощного положительного заряда на поверхность мембраны что приводит к гиперполяризации мембраны. КУД смещается вслед за потенциалом мембраны но в меньшей степени.
30840. Строение биомембран 52 KB
  Основу мембраны составляет липидный бислой двойной слой амфифильных липидов которые имеют гидрофильную головку и два гидрофобных хвоста . В липидном слое липидные молекулы пространственно ориентированы обращены друг к другу гидрофобными хвостами головки молекул обращены на наружную и внутреннюю поверхности мембраны. Липиды мембраны: фосфолипиды сфинголипиды гликолипиды холестерин. К ним относятся рецепторные белки белки адгезии; трансмембранные пронизывают всю толщу мембраны причем некоторые белки проходят через...