42149

ИЗУЧЕНИЕ ПРОЦЕССОВ ЗАРЯДА И РАЗРЯДА КОНДЕНСАТОРА

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Изучение закономерностей заряда и разряда конденсатора.магазина сопротивлений МС магазин емкостей MEисточник питания ИП звуковой генератор ГЗ электронный осциллограф блок с конденсаторами. ПОСТАНОВКА ЗАДАЧИ Принципиальная электрическая схема для наблюдения процессов заряда и разряда конденсатора изображена на рис.

Русский

2013-10-27

202.53 KB

8 чел.

ЛАБОРАТОРНАЯ  РАБОТА  № 3-6

ИЗУЧЕНИЕ  ПРОЦЕССОВ  ЗАРЯДА  И  РАЗРЯДА  КОНДЕНСАТОРА

Цель работы.Изучение закономерностей заряда и разряда конденсатора.

Приборы и оборудование: Преобразователь импульсов (кассета ФПЭ - ПИ), два .магазина сопротивлений (МС), магазин емкостей (ME),источник питания (ИП), звуковой генератор (ГЗ), электронный осциллограф, блок с конденсаторами. (БК), вольтметр Щ 4313 и секундомер.

ПОСТАНОВКА  ЗАДАЧИ

Принципиальная электрическая схема для наблюдения процессов заряда и разряда конденсатора изображена на рис. 1.

                

Рис.1.

В цепь, состоящую из переменных активных сопротивлений R и R  и переменной емкости С, подаются от звукового генератора сигналы прямоугольной формы, частоту следования которых можно изменять. Так как  время заряда и разряда конденсатора конечно, сигнал прямоугольной формы будет искажаться. Чтобы понять, почему это происходит, рассмотрим процессы заряда и разряда конденсатора.

При зарядке конденсатора напряжение U на входе цепи, состоящей из сопротивления R и емкости С, в начальный момент зарядки конденсатора почти все будет падать на сопротивлении R, а в конце зарядки, когда ток будет приближаться к нулю,  на конденсаторе С.

Из закона сохранения энергии следует, что работа источника тока dA равна сумме количества джоулевой теплоты dQ, выделившейся на сопротивлении R и электрической энергии заряженного конденсатора dW

dA = dQ + dW .    (1)

Это уравнение энергетического баланса для произвольного промежутка времени dt, в котором

                                                dA = U I dt                                                  (2 а)                            работа источника тока (I –ток, проходящий через источник,  U- его напряжение)                                                                                    

                                          dQ = I Rdt,                                                        (2б) 

энергия, выделяемая на сопротивлении в форме теплоты 

,                       (2в)

изменение   энергии   конденсатора  при  сообщении ему    заряда dq.  Подставляя (2 а, б, в) в (1) и учитывая, что I = dq/dt, получим

.

При увеличении времени от 0 до t заряд на конденсаторе изменяется от 0 до q. Интегрируя в указанных пределах, получим

,

а после потенцирования

.    (3)

Получили закон изменения заряда конденсатора в процессе его заряда. Из (3) следует, что при t   заряд, асимптотически приближается к своему максимальному значению: q = C Uo.

При разряде конденсатора источник напряжения отключен, и конденсатор разряжается через сопротивление R. Следовательно, падение напряжения на этом сопротивлении равно напряжению на конденсаторе

                 .   (4)

Решением данного уравнения будет выражение

.    (5)

Знак "минус" в формуле (4) показывает, что ток разряда I = -(dq | dt)  появляется за счет убыли заряда. Анализируя (5), видим, что при t , заряд конденсатора асимптотически приближается к нулю. Произведения RС и RС в формулах (3) и (5) имеют размерность времени и называются временем релаксации :

зар = RС,  раз = RС .   (6)

Уравнения (3) и (5) называются законами заряда и разряда конденсатора соответственно. Так q = CU и q = CU, то их можно записать в величинах напряжения

,    (7)

                   .     (8)

Графики этих процессов изображены на рис. 2 (пунктирной линией показан входной сигнал) для двух различных значений  R C и R C2/

     U

                          tзар                 tраз

                  t       t    t        t  

Рис. 2

В момент времени t входное напряжение в виде сигнала прямоугольной формы (показано пунктиром) подается на цепочку R  С и конденсатор начинает заряжаться. Если конденсатор заряжается длительное время (t>зар), то его напряжение достигает значения U . При увеличении частоты следования импульсов (время релаксации велико) заряд и разряд конденсатора будут неполными (см. вторую диаграмму на рис. 2.). Таким образом, время релаксации характеризует процесс заряда и разряда конденсатора и, следовательно, является важнейшей характеристикой любой цепочки RС.

ЭКСПЕРИМЕНТАЛЬНАЯ  ЧАСТЬ

Перед началом работы следует ознакомиться с описанием электронного осциллографа и звукового генератора. Рабочая электрическая схема изображена на рис. 3. Установка состоит из 2  магазинов сопротивлений (МС) и магазина емкостей (ME), собранных в отдельных кассетах, источника питания, электронного осциллографа (ЭО) и звукового генератора (ГЗ).

. Включите в сеть 220 В блок питания, звуковой генератор и осциллограф.

. Тумблеры "Синхронизация" и "Делитель развертки" на боковой панели осциллографа поставить в верхнее положение. Ручки "Усиление" и "Синхронизация" на передней панели осциллографа установить в положение " ".

ПОРЯДОК  ВЫПОЛНЕНИЯ  РАБОТЫ

Задание 1. Получение на экране осциллографа прямоугольных

импульсов.

1.  Все клавиши на панели магазинов сопротивлений и магазина емкостей находятся в отжатом состоянии.

. Установить на панели осциллографа переключатель "V/дел" в положение "2V/дел", а переключатель "S/дел" в положение "10S/дел".

. Установите на передней панели звукового генератора частоты указатель ручки "Множитель" в положение "10".

4. Последовательно изменяя регулятором "Частота, Гц" частоту следования импульсов от 20 до 100 кГц (через 20 кГц), получите на экране осциллографа и зарисуйте картины прямоугольных импульсов в масштабе сетки (на экране 6 делений по вертикали и 10 делений по горизонтали, цена деления 6 мм).

. Сделайте вывод о том, как и почему меняется расположение прямоугольных импульсов в зависимости от частоты их следования.

Задание 2. Получение на экране осциллографа кривых заряда и разряда конденсатора.

1. Установите на магазине сопротивлений и емкостей следующие значения: R = 1  10 Ом, С = 2 10-1 мкФ; на генераторе сигналов частоту 30 10 Гц; на панели осциллографа переключатель "V/дел" находится в положении "0,5 V/дел", а переключатель "S/дел" в положении "5S/дел"

. Последовательно изменяя регулятором "Частота, Гц" от 30 до 90 кГц (через 20 кГц) частоту следования импульсов, получите на экране осциллографа и зарисуйте в масштабе сетки экрана картины кривых заряда и разряда конденсатора.

. Сделайте вывод о том, как и почему меняется картина кривых заряда и разряда конденсатора.

Задание 3. Изучение разряда конденсатора.

1. Собрать схему, изображенную на рис.4.

2. На блоке с конденсатором клеммы "Заряд" соедините с источником питания " +12  120 В" ("плюс" с "плюсом", "минус" с "минусом"). Клеммы "Разряд" подсоединить к вольтметру (прибор комбинированный цифровой Щ4313) ("плюс" к клемме " V ", "минус" к клемме " * "). На вольтметре нажать кнопки "200" и " V ". Тумблер на блоке с конденсатором стоит в положении "Разряд".

 + 

                         =

-         

Рис. 4.

3. В разъем "Сопротивление" на блоке с конденсатором включите сопротивление 1 кОм, через которое будет разряжаться конденсатор.

4. Включите в сеть 220 В источник питания, Щ4313 и секундомер.

. Установите на вольтметре источника питания напряжение 40 В.

. Переключите тумблер на блоке с конденсатором в положение "Заряд" (З), зарядите конденсатор до максимального значения  40 В.

. Затем переключите тумблер на блоке с конденсатором в положение "Разряд" (Р) и одновременно включите секундомер.

. Запишите показания вольтметра Щ4313 (10 - 12 значений) через каждые 10 секунд до полного разряда конденсатора. Данные занести в таблицу.

Таблица

t, c

0

30

и т.д.

1 кОм

Uраз

nUраз

9. Снимите показания для других 2-х значений сопротивления разрядки.

. Постройте графики зависимостей Uраз = f(t) и nUраз = f(t).

11. Прологарифмируйте выражение (8) и определите время релаксации разряда по формуле

,

за  t можно принять все время измерения.

. Сделайте вывод о разряде конденсатора в зависимости от изменения R.

КОНТРОЛЬНЫЕ  ВОПРОСЫ

  1.  Порядок выполнения работы.
  2.   Понятие электроемкости, ее физический смысл.
  3.  Получить закон изменения заряда на конденсаторе в процессе его заряда и разряда.
  4.  Энергия заряженного уединенного проводника и конденсатора.
  5.  Запишите уравнение энергетического баланса для произвольного промежутка времени и объясните его.
  6.  Как получить на экране осциллографа прямоугольный импульс?
  7.  Нарисуйте и объясните работу схем, изображенных в методических указаниях на рис. 1,  3 и 4.
  8.  Как получить на экране осциллографа кривые заряда и разряда конденсатора?
  9.  Как определяется работа, совершаемая при зарядке конденсатора?
  10.  Типы конденсаторов,  их устройство, работа и применение.
  11.  Получите формулу для времени релаксации разряда раз.
  12.  Нарисуйте и объясните график функции Uраз = f(t).


 

А также другие работы, которые могут Вас заинтересовать

1135. Контроль предела разрешения, фокусных расстояний и качества сборки узлов ЭОС 119.5 KB
  Ознакомиться с параметрами оптических узлов, по которым проверяется правильность их сборки. Изучить методику оценки качества сборки по дифракционному изображению точки. Получить навыки определения фокусного расстояния и предела разрешения оптических систем.
1136. Центрировка линз. методы измерения децентричности 224.5 KB
  Методы контроля децентричности. Контроль с помощью коллиматора и микроскопа. Схема контроля децентрировки линз в проходящем свете с помощью коллиматора и микроскопа. Контроль с помощью автоколлимационного микроскопа. Контроль деценрировки на автоколлимационном микроскопе А.А.Забелина.
1137. Миры штриховые для определения предела разрешения 143 KB
  Штриховая мира состоит из элементов с различным количеством штрихов одинаковой длины. Ширина штрихов каждой миры убывает от элемента №1 к элементу номер 25 по закону геометрической прогрессии со знаменателем. Число штрихов в каждой группе элементов миры.
1138. Определение цены деления микроскопа с окуляр-микрометром 44 KB
  Для определения цены деления микроскоп-микрометра применяют объект-микрометр (шкалу с ценой деления 0,01 мм). Перекрестие шкалы окулярного микрометра.
1139. Типовые контрольно-юстировочные приборы 75 KB
  Зрительные трубки. Диоптрийная трубка. Коллиматоры для проверки разрешающей силы и качества изображения. Широкоугольный коллиматор.
1140. Информационные системы и базы данных. Основные требования к СУБД. Основные функции и структура СУБД. 686.5 KB
  Создание пустой базы данных в среде СУБД Access 2003. Добавление полей связи. Концептуальная модель проектируемой базы данных.
1141. Средства среды Delphi и C++Builder для разработки приложений для БД 384.5 KB
  Изучение принципов работы с базами данных в С++ или Delphi. Применение визуальных и невизуальных компонент для организации доступа к базе данных.
1142. Создание базы данных Автосалона 282 KB
  Анализ информационных задач и круга пользователей системы. Определение требований к операционной обстановке. Выбор СУБД и других программных средств. Анализ информационных задач и круга пользователей системы. Преобразование ER–диаграммы в схему базы данных.
1143. Применение экранных форм для ввода и редактирования данных в зависимых связанных объектах базы данных 482 KB
  Приобретение навыков построения системы меню приложений баз данных при помощи средств разработки меню графического интерфейса пакета FoxPro.