42156

ОПРЕДЕЛЕНИЕ ТОЧКИ КЮРИ ФЕРРОМАГНЕТИКА

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Менделеева обладают железо никель кобальт некоторые редкоземельные металлы а также их сплавы причем эти вещества проявляют ферромагнитные свойства лишь при температурах ниже некоторой определенной для каждого элемента или сплава температуры называемой точкой Кюри. Температура Кюри равна например 7700С для железа 3580С для никеля 11300С для кобальта 160С для гадолиния 1680С для диспрозия. При более высокой температуре и в самой точке Кюри вследствие теплового движения атомов в ферромагнетиках разрушается магнитный порядок и они...

Русский

2013-10-27

60.5 KB

18 чел.

ЛАБОРАТОРНАЯ  РАБОТА № 4 – 4

ОПРЕДЕЛЕНИЕ ТОЧКИ КЮРИ ФЕРРОМАГНЕТИКА

         Цель работы - экспериментальное исследование влияния температуры на свойства ферромагнетиков.

ПОСТАНОВКА ЗАДАЧИ

         Ферромагнитными свойствами из элементов периодической системы Д.И. Менделеева обладают железо, никель, кобальт, некоторые редкоземельные металлы, а также их сплавы, причем эти вещества проявляют ферромагнитные свойства лишь при температурах ниже некоторой, определенной для каждого элемента или сплава температуры, называемой точкой Кюри. Эта температура фазового перехода второго рода,  обусловленного скачкообразным изменением магнитных и электрических свойств вещества. Температура Кюри, равна например, 7700С для железа, 3580С для никеля, 11300С для кобальта, 160С для гадолиния,  1680С для диспрозия. При более высокой температуре (и в самой точке Кюри) вследствие теплового движения атомов в ферромагнетиках разрушается магнитный порядок и они переходят в состояние парамагнетиков.

         При охлаждении ниже точки Кюри в ферромагнетике возникает самопроизвольная (спонтанная) намагниченность, то есть каждый кристалл образца оказывается намагниченным до насыщения. У обычных ферромагнитных образцов вследствие их конечных размеров энергетически более выгодным оказывается разделение кристалла на ряд антипараллельно намагниченных областей – доменов. Чем на большее количество таких доменов разобьется образец, тем меньше будет его магнитная энергия. Таким образом, в целом ферромагнетик оказывается разделенным на множество доменов, намагниченных до насыщения так, что результирующая намагниченность образца в отсутствие внешнего поля равна нулю.

         Впервые предположение о существовании магнитных доменов для объяснения легкого намагничивания в сравнительно слабых магнитных полях высказал в 1892 году русский ученый Б.Л. Розинг, а затем в 1907 году – французский ученый П. Вейсс.

         С увеличением температуры магнитные свойства ферромагнетиков изменяются. Магнитная проницаемость    и намагниченность насыщения   JS уменьшаются и при достижении температуры, называемой точкой Кюри, намагниченность насыщения становится весьма незначительной, а магнитная проницаемость практически становится равной единице, то есть осуществляется превращение ферромагнетика в парамагнетик. На указанных особенностях поведения    и  JS при повышении температуры основан предлагаемый метод определения точки Кюри.

ОПИСАНИЕ ЛАБОРАТОРНОЙ УСТАНОВКИ

         В печь (рис. 1) помещается исследуемый образец  2 , который нагревается обмоткой 3, являющейся одновременно намагничивающим соленоидом. При протекании тока через соленоид 3 во вторичной обмотке 4 индуцируется ЭДС, которая регистрируется милливольтметром. Температура измеряется прибором с термопарой хромель – алюмель.

Рис.1

         Сущность метода заключается в следующем. При пропускании тока через соленоид 3 во вторичной обмотке возникает ЭДС индукции, определяемая по закону Фарадея – Ленца:

                                             Еинд = - ,                                                 (1)

где  Ф – магнитный поток, пронизывающий площадь витков вторичной обмотки;

                                              Ф  N2 B S,                                                      (2)

где  N2 – число витков вторичной обмотки, В  - магнитная индукция поля, создаваемая соленоидом,  S – площадь сечения витка вторичной обмотки.

         Магнитную индукцию в образце можно представить так:

                                              В = В0 + В1   = 0Н + 0 J,                               (3)

где  В0 – магнитная индукция поля первичной обмотки без сердечника, В1 –добавочная магнитная индукция, появляющаяся в результате намагничивания вставленного сердечника, 0 = 4 10-7 Гн/м – магнитная постоянная, J – намагниченность (магнитный момент единицы объема).

         Магнитный поток в общем случае можно выразить как

                                          Ф = N2(B0 + B1) S.                                               (4) 

Отсюда для (1) с учетом (4)

               Еинд   .                                  (5)

В случае, если в печи нет образца, а ее объем заполнен воздухом (парамагнетик    1), то во вторичной обмотке наводится ЭДС,  равная

                                    Е0   ,                                                     (6)                                   

Величину которой можно экспериментально оценить, если вынуть образец из печи и включить соленоид. ЭДС индукции, обусловленная влиянием ферромагнетика, равна

                                 Е12 ,                                (7)

где  В1 – магнитное поле, индуцированное материалом образца. Величина  В  прямо пропорциональна намагниченности  J  образца. При повышении температуры намагниченность насыщения ферромагнетика уменьшается. При температуре Кюри ферромагнетик превращается в парамагнетик, величина  В  которого весьма мала. Поэтому с ростом температуры  уменьшается и при некоторой температуре становится почти равной нулю. ЭДС во вторичной обмотке уменьшается до Е0. Эта температура соответствует точке Кюри.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

         1. Вставьте образец в печь и подайте указанное на установке напряжение.

         2. Через каждые 100С записывайте показания милливольтметра во вторичной обмотке до тех пор, пока милливольтметр будет показывать постоянное значение близкое к нулю.

         3. По полученным результатам температуры в печи и напряжения во вторичной обмотке постройте график зависимости  U2 = f (t0C).

         4. По полученному графику определите точку Кюри.

КОНТРОЛЬНЫЕ ВОПРОСЫ

  1.  Магнетики, их классификация.
  2.  Как происходит процесс намагничивания?
  3.  Как объяснить большую магнитную проницаемость ферромагнетиков?
  4.  Что называется точкой Кюри? Почему в точке Кюри ферромагнетик превращается в парамагнетик?
  5.  Показать, почему методом, применяемым в данной работе, можно определить точку Кюри?
  6.  Почему ЭДС индукции во вторичной обмотке резко уменьшается с приближением к точке Кюри?
  7.  Выведите формулу для ЭДС во вторичной обмотке.

20


U
2, mV

tK                                     t,0C

  1.  

 

А также другие работы, которые могут Вас заинтересовать

6666. Ассоциации полиморфных участков генома с клинической картиной РС 22.5 KB
  Ассоциации полиморфных участков генома с клинической картиной РС. Одним из преимуществ подхода ген-кандидат является возможность выявить ассоциации генов не только с заболеванием в целом, но и с различными клиническими характеристиками заболевания, ...
6667. Фармакогенетический анализ при РС 24.81 KB
  Фармакогенетический анализ при РС Фармакогенетический анализ, направленный на изучение эффективности терапии лекарственными препаратами в зависимости от генетических особенностей больных, становится все более важным направлением генетических исследо...
6668. Эпилепсия - хроническое заболевание головного мозга 26.68 KB
  Эпилепсия - хроническое заболевание головного мозга, причиной которого является чрезмерная нейронная активность. В настоящее время выделяют следующие типы эпилепсий: Локализационно обусловленные (фокальные, локальные, парциальны...
6669. Фокальные (парциальные) формы эпилепсии 29.27 KB
  Фокальные (парциальные) формы эпилепсии Клиническая картина парциальных приступов зависит от расположения очага поражения. Простой парциальный приступ протекает без изменения или потери сознания, пациент сам рассказывает о своих ощущениях (в случае,...
6670. Генетические факторы в развитии цереброваскулярной патологии 20.98 KB
  Генетические факторы в развитии цереброваскулярной патологии Цереброваскулярная патология и, в частности, инсульт занимают одно из ведущих мест в структуре смертности и инвалидизации в Российской Федерации и в мире. Основными факторами риска церебро...
6671. Артериальная гипертензия - стойкое повышение АД 23.53 KB
  Артериальная гипертензия Артериальная гипертензия - это стойкое повышение АД выше 140/90 мм рт. ст. (в соответствии с критериями ВОЗ). Выделяют первичную (эссенциальную) и вторичную гипертензию. Первый вариант используется для описания хроничес...
6672. Суточное мониторирование артериального давления (СМАД) 23.56 KB
  Суточное мониторирование артериального давления (СМАД). Артериальное давление в норме и у лиц с артериальной гипертензией изменяется в течение суток, и поэтому большое значение для определения тяжести АГ, назначения антигипертензивной терапии, оптим...
6673. Генетические аспекты регуляции артериального давления и развития артериальной гипертензии 20.21 KB
  Генетические аспекты регуляции артериального давления и развития артериальной гипертензии На основании результатов полногеномного сканирования к настоящему времени выявлено более 30 локусов на разных хромосомах, имеющих отношение к регуляции артериа...
6674. Моногенные формы артериальной гипертензии 21.72 KB
  Моногенные формы артериальной гипертензии Большое количество информации по генетике артериальной гипертензии было получено при выявлении нарушений в отдельных генах, благодаря которым были охарактеризованы Менделевские (моногенные) формы гипертонии....