42157

Изучение магнитного поля соленоида (катушки с однонаправленными витками)

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Магнитное поле соленоида представляет собой результат сложения полей создаваемых круговыми токами расположенными вплотную и имеющими общую ось. Сечение соленоида схематически показано на рис. Распределение магнитной индукции по длине соленоида вдоль его оси описывается выражением.

Русский

2017-09-27

90 KB

40 чел.

ЛАБОРАТОРНАЯ   РАБОТА  № 4 – 5

ИЗУЧЕНИЕ МАГНИТНОГО ПОЛЯ СОЛЕНОИДА

         Цель работы - экспериментальное изучение распределения магнитного поля вдоль оси соленоида.

ПОСТАНОВКА ЗАДАЧИ

         Соленоидом называют катушку цилиндрической или иной формы из проволоки, витки которой намотаны в одном направлении. Магнитное поле соленоида представляет собой результат сложения полей, создаваемых круговыми токами, расположенными вплотную и имеющими общую ось. Сечение соленоида схематически показано на рис.1. Распределение магнитной индукции по длине соленоида вдоль его оси описывается выражением (1):

                                             Рис. 1

                          (Сos 2 - Cos 1),                                               (1)

где I – сила тока, протекающего по соленоиду, 0 = 4 10-7  Гн/м – магнитная постоянная,  1 и  2 – углы между осью соленоида (по направлению вектора В) и прямыми, проведенными от исследуемой точки  А  до концов соленоида (точки  В  и  С  соответственно), n = N/L - число витков, приходящихся на единицу длины соленоида, N – число витков соленоида, L – его длина.

        Для бесконечно длинного соленоида в каждой точке на его оси      1 = 1800,   = 00. Подставляя значения  1 и  2 в  (1), получаем выражение для магнитной индукции на оси бесконечно длинного соленоида, В:  

                                             В = 0 n I.                                                      (2)

         Индукция  В  магнитного поля в любой точке на оси соленоида конечной длины всегда меньше индукции магнитного поля бесконечно длинного соленоида В в  В/ В раз.

         Зная геометрические параметры соленоида ( L и D), можно рассчитать  1 и  2 , а следовательно, и  В для любой точки оси соленоида. Для центра соленоида выражение для  В  имеет наиболее простой вид ( в этом случае 1 = 1800 -  2).

         Обозначив  2 = 0, а  1 = 1800 - 0 и подставив в (3), получим выражение для индукции магнитного поля в центре соленоида, ВЦ:

                                        ВЦ = В Соs 0.

Из геометрических соображений

                  Cos 0 = .                             (3)

Тогда

                                         ВЦ =  .                                              (4)

         В данной работе для экспериментального изучения распределения магнитного поля на оси соленоида используется датчик, работа которого основана на эффекте Холла. При внесении в магнитное поле датчика Холла (рис. 2) в его проводящей пластине, расположенной перпендикулярно вектору магнитной индукции, через которую проходит постоянный ток, возникает поперечная разность потенциалов, то есть ЭДС Холла  ЕХ:  

                                                                    b      

                              IX                                                        EX

                              IX                                                EX    

                                                          Рис. 2

                                      ЕХ = ,                                                     (5)

где  RXпостоянная Холла,  b – толщина пластины в направлении вектора индукции магнитного поля, IХ – сила тока, проходящего через пластину,  B – модуль вектора индукции магнитного поля, в котором находится пластина.      

ОПИСАНИЕ  ЛАБОРАТОРНОЙ УСТАНОВКИ  

                                       

         Блок схема установки представлена на рис. 3.

                                                    ФПЭ-04  

                                                                                               В7-16А    

            Источник                              PV 

             питания         

                                                                                             100 v    

                                                               Рис. 3

         Установка ФПЭ-04 кассетного типа представляет собой соленоид, внутри которого перемещается шток. На конце штока установлен датчик Холла. По длине штока нанесена сантиметровая шкала, по которой определяется положение датчика относительно центра соленоида ( 0 – соответствует положению датчика Холла в центре соленоида).

         Геометрические параметры соленоида: диаметр D = 58 мм, длина – L = 168 мм, число витков N – 1700.

         Параметры датчика Холла: ДХГ-2 с германиевой пластиной, геометрические параметры которой 7х10х0,4 мм, b = 0,4 мм, I = 0,013 А.

         Используемый в работе датчик Холла нужно проградуировать. Для этого необходимо найти зависимость ЭДС Холла от величины индукции магнитного поля,  ЕХ (В). С этой целью датчик Холла устанавливается в центре соленоида, где неоднородность магнитного поля наименьшая. Меняя ток соленоида  I (соответственно В), измеряют  ЕХ. Рассчитав по формуле (4)  В , строят  градуировочный график  ЕХ (В).

         Установив в соленоиде некоторые значения тока и перемещая датчик Холла вдоль оси соленоида ( на различное   ), измеряют ЕХ (В). Далее по градуировочному графику каждому значению  ЕХ ставится в соответствие значение  В  и строится график зависимости В (), то есть кривая распределения индукции магнитного поля вдоль оси соленоида. По формуле (5) определяют постоянную датчика Холла RX.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

         Упражнение 1. Градуировка датчика Холла.

         1. Установите датчик Холла в центре соленоида (на штоке должно быть деление 0).

         2. Включите источник питания.

         3. Установите ток соленоида  I = 0,4 А. Для измерения тока соленоида должна быть включена правая кнопка «Контроль тока» на источнике питания. Регулировка тока соленоида осуществляется ручкой «5 В – 25 В».

         4. Измерьте напряжение  ЕХ по милливольтметру, подключенному к гнездам «PV».

         5. Увеличивая ток соленоида до 1,8 А через каждые 0,2 А, измеряйте значения ЭДС ЕХ. Полученные данные  ЕХ  и  тока соленоида  IC занесите в табл. 1.

         6. Повторите пункт  5  в обратном направлении, то есть, измеряйте значения  ЕХ, уменьшая ток соленоида от 1,8 А до 0,4 А через 0,2 А. Данные занесите в табл 1.

         7. Усредните значения  ЕХ для каждого значения  IC при прямом и обратном измерениях.

         8. Вычислите индукцию магнитного поля в центре соленоида по формуле (4).

Таблица   1

№ п/п

Ток в соленоиде, IC , А

ЕХ при увеличении тока соленоида, мВ

ЕХ при уменьшении тока соленоида, мВ

Среднее значение ЕХ , мВ

В = 0nI

В, Тл

1

2

и т.д.

         9. Постройте график зависимости ЭДС Холла  ЕХ от индукции магнитного поля  В, ЕХ (В).

  1.   Из выражения (5) определите постоянную Холла

                                               ,

где  tg  находится из графика  ЕХ (В).

         Упражнение 2. Изучение распределения магнитного поля вдоль оси соленоида.

         1. Установите ток соленоида 0,5 А, 1 А или 1,5 А (по указанию преподавателя).

         2. Перемещая шток с датчиком Холла вдоль оси соленоида на расстояние   через 1 см, измеряйте значения ЭДС Холла ЕХ. Данные  и ЕХ занесите в табл. 2.

         3. По графику ЕХ (В) определите значения индукции магнитного поля  В  соленоида, соответствующие каждому значению  ЕХ  при различных  . Данные занесите в табл. 2.

Таблица   2

№ п/п

Положение датчика Холла в соленоиде,

, см

ЭДС Холла,

ЕХ , мВ

Индукция магнитного поля вдоль оси соленоида,  В, Тл

1

2

и т. д.

         4. Постройте график зависимости величины индукции магнитного поля от расстояния   относительно центра катушки, В (), в положительном и отрицательном направлениях, рис. 4.

         5. Отметьте границу соленоида «конец катушки».

         6. Сделайте вывод об однородности магнитного поля в соленоиде.

                                                               Рис. 4.

КОНТРОЛЬНЫЕ ВОПРОСЫ

  1.  В чем заключается эффект Холла. Объясните принцип работы датчика Холла.
  2.  Дайте определение силы Лоренца. Как определяется ее величина и направление.
  3.  Объясните характер распределения магнитного поля вдоль оси соленоида, полученного в работе
  4.  Во сколько раз и почему магнитное поле конечного соленоида меньше поля бесконечного соленоида?
  5.  Изобразите силовые линии магнитного поля прямого провода, витка с током и соленоида.
  6.  Запишите закон Био – Савара – Лапласа.
  7.  Выведите формулу для расчета магнитного поля на оси соленоида конечной длины, бесконечно длинного соленоида.

8. Получите формулу для расчета магнитного поля, создаваемого проводником с током в форме кольца в его центре.

26


 

А также другие работы, которые могут Вас заинтересовать

21707. Разделы модуля «Базовые понятия. Методы извлечения знаний» 368 KB
  Методы извлечения знаний [1] История и этапы развития искусственного интеллекта [2] Подходы к созданию систем искусственного интеллекта [3] Искусственный интеллект в России [4] Направления развития искусственного интеллекта [5] Основные определения [6] Методы извлечения знаний [7] Классификация методов извлечения знаний [8] Пассивные методы [9] Наблюдения [10] Анализ протоколов мыслей вслух [11] Лекции [12] Активные методы [13] Активные индивидуальные методы [14] Анкетирование [15] Интервью [16] Свободный диалог [17] Активные групповые методы...
21708. Модуль Жизненный цикл интеллектуальной системы 147.5 KB
  2] Этап 2: Разработка прототипной системы [1.4] Этап 4: Оценка системы [1.5] Этап 5: Стыковка системы [1.
21709. Модуль Методы представления знаний: Нечеткая логика 192 KB
  Математический аппарат Характеристикой нечеткого множества выступает функция принадлежности Membership Function. Обозначим через MFcx степень принадлежности к нечеткому множеству C представляющей собой обобщение понятия характеристической функции обычного множества. Значение MFcx=0 означает отсутствие принадлежности к множеству 1 полную принадлежность. Так чай с температурой 60 С принадлежит к множеству 'Горячий' со степенью принадлежности 080.
21711. Оценка вероятностей возможных последствий от нарушений электроснабжения потребителей 181.5 KB
  Оценка вероятностей возможных последствий от нарушений электроснабжения потребителей Для решения широкого класса задач эксплуатации и проектирования с учётом фактора надёжности необходимо определение вероятностей возникновения возможных последствий от нарушения электроснабжения потребителей которые сводятся к следующим: вероятность возникновения катастрофических и аварийных ситуаций исследование которых необходимо для нормирования надёжности электроснабжения; вероятность возникновения отдельных составляющих ущерба их величина и...
21712. ИСПЫТАНИЯ НА НАДЕЖНОСТЬ ЭМС. КОНТРОЛЬНЫЕ ИСПЫТАНИЯ 2.49 MB
  Показатели надежности экспериментальными методами могут быть получены по результатам либо испытаний специальных или совмещенных либо наблюдением за функционированием объекта в условиях эксплуатации. Методы испытаний организуются специально с целью определения показателей надежности объем их обычно заранее планируется условия функционирования объектов устанавливаются исходя из требований оценки конкретных показателей. Показатели надежности таких объектов оцениваются в основном либо по результатам совмещенных испытаний при которых...
21713. СТАТИСТИЧЕСКИЕ МЕТОДЫ ОЦЕНКИ, АНАЛИЗА И КОНТРОЛЯ НАДЕЖНОСТИ 358.5 KB
  Сбор информации об отказе элементов технических систем В общем комплексе мероприятий по обеспечению надёжности любого изделия сбор статистической информации об отказах и оценка показателей надёжности в условиях эксплуатации являются последним заключительным этапом. При этом появляется возможность оценить реальные значения показателей надежности и следовательно оценить эффективность мероприятий по обеспечению надёжности на всех этапах проектирование производство испытания монтаж эксплуатация. Поэтому особое значение приобретает вопрос...
21714. ИСПЫТАНИЯ НА НАДЕЖНОСТЬ ЭМС. ОПРЕДЕЛИТЕЛЬНЫЕ ИСПЫТАНИЯ 3.06 MB
  При определительных испытаниях могут оцениваться законы распределения отказов и их параметры. При определительных испытаниях могут оцениваться законы распределения отказов и их параметры. Однако существует универсальный план испытаний позволяющий по единой методике проводить статистическую оценку величины Р для изделий с любым законом распределения. Полученные данные по отказам изделий в результате испытаний или по данным эксплуатации подвергаются статистической обработке для получения следующих результатов: определения вида функции...
21715. Планирование эксперимента при ускоренных испытаниях электрических машин 102 KB
  ТЕМА № 2 Регрессионный анализ установившихся режимов электрической системы Для этой цели целесообразно использование регрессионного моделирования сложной системы. При этом с использованием имеющихся программ расчета установившегося режима на ЭВМ проводятся целенаправленные исследования в результате которых получаются регрессионные модели для анализа или управления. Такие модели могут быть получены при регрессионном анализе или методом планирования многофакторного эксперимента МПЭ. При этом для построения линейных моделей используется полный...