42159

ИЗУЧЕНИЕ СИЛЫ ВЗАИМОДЕЙСТВИЯ ДВУХ КРУГОВЫХ КОНТУРОВ С ТОКОМ

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Механическое взаимодействие контуров с током под действием силы Ампера можно представить следующим образом: один контур создает магнитное поле которое воздействует на проводники с током второго контура и наоборот. Таким образом задача анализа взаимодействия контуров расчленяется на две: первая – расчет магнитного поля создаваемого первым контуром в месте расположения витков второго и вторая – определение силы действующей на второй контур. 3 показаны силы действующие на два произвольных симметрично...

Русский

2013-10-27

105 KB

48 чел.

ЛАБОРАТОРНАЯ РАБОТА  № 4 – 7

ИЗУЧЕНИЕ СИЛЫ ВЗАИМОДЕЙСТВИЯ                                              ДВУХ  КРУГОВЫХ КОНТУРОВ С ТОКОМ

         Цель работы - экспериментальное определение зависимости силы взаимодействия катушек с током от величины протекающего по ним тока.

ПОСТАНОВКА ЗАДАЧИ

          Механическое взаимодействие контуров с током под действием силы Ампера можно представить следующим образом: один контур создает магнитное поле, которое воздействует на проводники с током второго контура и наоборот. Таким образом, задача анализа взаимодействия контуров расчленяется на две: первая – расчет магнитного поля, создаваемого первым контуром в месте расположения витков второго, и вторая – определение силы, действующей на второй контур. Задача расчета магнитного поля решается с помощью закона Био – Савара – Лапласа, который дает возможность определить индукцию магнитного поля  , создаваемого элементом   проводника с током  I  в точке  А, находящейся на расстоянии   от  

                                          ,                                            (1)

где  0 = 4 10-7 Гн/м – магнитная постоянная, - магнитная проницаемость среды (воздух - = 1,0). Векторное произведение   определяет направление  :   перпендикулярен плоскости, построенной на векторах    и   и направлен в сторону, глядя с которой, можно совместить вектор   с    кратчайшим вращением против часовой стрелки.

                                                                                           

                                      

                                                      

         На рис. 1 вектора     и    лежат в плоскости листа и согласно правилу векторного произведения вектор    перпендикулярен плоскости листа и направлен к нам. Определив с помощью закона Био – Савара – Лапласа вектор  , для каждого элемента контура проводим интегрирование по всем элементам контура.  Поскольку катушка состоит из  N  одинаковых витков,  интегрирование проведем по элементам одного витка и результат умножим на число витков  N.

                                       .                                        (2)

         Картина магнитного поля кругового контура изображена на рис. 2.

                                                                Z

                                                                                                    

                                                                                                             

                                                                                                        

                                                  R                                                  X

                                                           

                                                      I   

                                                           Рис. 2

         Видно, что поле симметрично относительно оси контура и индукция имеет две составляющих:  BZ – перпендикулярную плоскости контура и  BX – параллельную плоскости контура. В лабораторной работе второй контур расположен соосно с первым на расстоянии b от него. Результат интегрирования при  x = R  (R – радиус контура)  и  Z = b дает величину магнитной индукции в месте расположения витков второй катушки

                           .                    (3)

Здесь  Е  и  К  - эллиптические интегралы (специальные функции, зависящие от величин  R  и  b)/ Составляющая  BZ нам не понадобится.

         Рассчитав поле, приступим к определению сил. Будем опираться на закон Ампера, который позволяет определить силу    , действующей на элемент      проводника с током  I , помещенного в поле с индукцией  :

                                                                                               (4)

Направление    определяется правилом левой руки. На рис. 3 показаны силы, действующие на два произвольных, симметрично расположенных контура в магнитном поле.

                       dFZ                                                          dFZ 

                                                                                                       

                                            dFX                          dFX     

                                                                        I   

                                                           Рис. 3

         Суммарная сила, действующая на контур, получается интегрированием выражения (4) по элементам второго контура. Из рис. 3 видно, что интегрирование составляющих  dFX дает ноль (эти силы сжимают контур), а интегрирование  dFZ дает суммарную силу отталкивания. Из правила левой руки следует, что  dFZ определяется составляющей индукции  BZ:

                                            dFZ = I dl BZ  .                                                       (5)

При интегрировании учтем, что и второй контур содержит  N  витков, а  ВХ одинакова для всех элементов  dl:

                                                                             (6)

Подставляем в (6) выражение для  ВХ, получаем расчетную формулу для силы взаимодействия между контурами:

                                                               (7)

         По таблицам специальных функций найдены значения эллиптических интегралов при   R = 54 мм  и

        b = 16 мм,              Е = 1,030,           К = 3,32

        b = 26 мм,              Е = 1,065,           К = 2,87.

ОПИСАНИЕ ЛАБОРАТОРНОЙ УСТАНОВКИ

         Электромагнитную силу взаимодействия контуров с током определяют с помощью  технических весов первого класса  (рис. 1).

         

                                                                                                           4     

                                                                                                      мг

                                                          3

                                                                                                           5

                                                              b  

                                   мА                  1                                               2

                                          =

                                                                             6         

                                                                 Рис. 4

         К левому плечу коромысла подвешена катушка (1), к правому – чашка для гирь (2). Вторая катушка (3) закреплена неподвижно над первой. С помощью рукоятки (4) правое коромысло весов нагружается перегрузками от 10 до 90 мг, с помощью рукоятки (5) – от 100 до 900 мг. Питание катушек осуществляется от выпрямителя постоянного тока, величина которого может регулироваться. Круглая форма катушек имеет практический интерес, так как устройства, аналогичные описанной лабораторной установке, применяются в метрологических лабораториях для измерения силы тока абсолютным методом.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

  1.  Установите расстояние между катушками 16 мм.
  2.  Осторожным поворотом рукоятки (6) разарретируйте и уравновесьте весы.
  3.  Включите установку в сеть и установите нулевой ток.
  4.  Поворотом рукоятки (5) положите перегрузок 100 мг и, увеличивая силу тока, уравновесьте весы. Тогда сила тяжести, действующая на перегрузок, и сила взаимодействия катушек будут равны.
  5.  Силу тока, массу перегрузка и расстояние между катушками занесите в таблицу.

B =

m, (мг)

I, (А)

P = mg

I2, (A2)

F, теор

1

2

100

200

  1.  Положите перегрузок 200 мг и повторите пункты 3 и 4 и так далее до 500 мг.
  2.  Определите силу взаимодействия по силе тяжести перегрузка            P = mg. 
  3.  Найдите квадрат силы тока.
  4.  По формуле (7) рассчитайте теоретическое значение силы взаимодействия.
  5.  Установите расстояние между катушками 26 мм и повторите пункты     4 – 9.
  6.  На одном графике для двух b постройте экспериментальные и теоретические зависимости силы взаимодействия катушек от  I2.

КОНТРОЛЬНЫЕ ВОПРОСЫ

  1.  Дайте определение индукции магнитного поля. Определите ее величину в центре между катушками.
  2.  Сформулируйте законы Био – Савара – Лапласа и Ампера.
  3.  Покажите на рисунке силы взаимодействия катушек.
  4.  Выведите формулу для магнитной индукции прямого проводника с током и кругового тока.
  5.  Получите формулу для силы взаимодействия параллельных токов.
  6.  Покажите, как изменяется сила взаимодействия контуров с изменением расстояния между ними.

       

38

I

Рис. 1


 

А также другие работы, которые могут Вас заинтересовать

37597. ГОСУДАРСТВЕННОЕ РЕГУЛИРОВАНИЕ ФАРМАЦЕВТИЧЕСКОГО РЫНКА 2.67 MB
  Целью диссертационной работы является исследование комплекса проблем рынка лекарственных средств для формирования системы государственного регулирования фармацевтического рынка России в сложившихся экономических, политических и социальных условиях.
37598. МЕТОДИЧЕСКИЕ ОСНОВЫ АНТИКРИЗИСНОГО УПРАВЛЕНИЯ ПРЕДПРИЯТИЕМ 1.27 MB
  современные проблемы управления несостоятельными предприятиями [2. Кризисные предприятия в национальной экономике России [2.2] Понятие несостоятельного предприятия [2. Степень качества финансового состояния предприятия [2.
37599. СТИМУЛИРОВАНИЕ НАЕМНЫХ РАБОТНИКОВ В ПРОЦЕССЕ ПРЕДПРИНИМАТЕЛЬСКОЙ ДЕЯТЕЛЬНОСТИ 1.04 MB
  Теоретические основы организации стимулирования наемных работников в процессе предпринимательской деятельности [2.2] работников в предпринимательской деятельности [2. Анализ действующих систем стимулирования наемных работников [3.
37600. Издержки производства: экономическая природа, региональные особенности и резервы снижения (на примере отраслей нефтедобычи Республики Татарстан) 957 KB
  Экономическое содержание издержек производства. Классификация издержек производства. Региональные особенности издержек производства в нефтедобыче.
37601. Проектирование информационных систем 1.12 MB
  Приводимые в обзоре рекомендации могут способствовать успешному внедрению CASEсредств и уменьшить риск неправильных инвестиций. Несмотря на высокие потенциальные возможности CASEтехнологии увеличение производительности труда улучшение качества программных продуктов поддержка унифицированного и согласованного стиля работы далеко не все разработчики информационных систем использующие CASEсредства достигают ожидаемых результатов. Существуют различные причины возможных неудач но видимо основной причиной является неадекватное понимание...
37602. Определение мощности дизельного двигателя 202.67 KB
  Определение мощности дизельного двигателя: 1. Процесс снятия индикаторной диаграммы с цилиндров двигателя называется индицированием цилиндров. Индикаторная диаграмма снятая с двигателя изображает действительный цикл с учетом всех потерь а площадь индикаторной диаграммы – индикаторную работу цикла Li. Если подставить в уравнение Pi в кг см2 Vh – в литрах как принято в двигателестроении число оборотов вала n в об мин и обозначить количество цилиндров – i а тактность двигателя – ττ = 2 – для двухтактного и...
37603. ИССЛЕДОВАНИЕ ВЛИЯНИЯ УГЛА АТАКИ ПОТОКА НА ХАРАКТЕРИСТИКИ ТУРБИННОЙ РЕШЕТКИ 317.21 KB
  ИССЛЕДОВАНИЕ ВЛИЯНИЯ УГЛА АТАКИ ПОТОКА НА ХАРАКТЕРИСТИКИ ТУРБИННОЙ РЕШЕТКИ Вопросы пространственного обтекания турбинных решеток чрезвычайно сложны и теоретически решается лишь для некоторых простейших случаев поэтому основным достоверным материалом для суждения о качественной и количественной зависимостях между отдельными величинами при обтекании турбинных решеток сжимаемой средой является материал эксперимента. Рисунок 1 Характеристики турбинной решетки Результаты эксперимента β1 = 450 Углы потока 1 2 3 4...
37605. Изучение методов векторного синтеза и отображения модулированных сигналов в современных систем связи 3.35 MB
  Формирование с помощью программы VSG модулированного сигнала в соответствии с данными приведенными в таблице ниже. Использованные параметры сигнала: Выборок на символ – 16; Количество символов – 500; Опорный уровень – 0 дБ.1 IQ составляющие сигнала QPSK во временной области без использования предмодуляционного фильтра Рисунок1.2 Векторная диаграмма и Сигнальное созвездие QPSK сигнала Далее по заданию вводим обработку сигнала с помощью предмодуляционного фильтра.