42159

ИЗУЧЕНИЕ СИЛЫ ВЗАИМОДЕЙСТВИЯ ДВУХ КРУГОВЫХ КОНТУРОВ С ТОКОМ

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Механическое взаимодействие контуров с током под действием силы Ампера можно представить следующим образом: один контур создает магнитное поле которое воздействует на проводники с током второго контура и наоборот. Таким образом задача анализа взаимодействия контуров расчленяется на две: первая расчет магнитного поля создаваемого первым контуром в месте расположения витков второго и вторая определение силы действующей на второй контур. 3 показаны силы действующие на два произвольных симметрично...

Русский

2013-10-27

105 KB

49 чел.

ЛАБОРАТОРНАЯ РАБОТА  № 4 – 7

ИЗУЧЕНИЕ СИЛЫ ВЗАИМОДЕЙСТВИЯ                                              ДВУХ  КРУГОВЫХ КОНТУРОВ С ТОКОМ

         Цель работы - экспериментальное определение зависимости силы взаимодействия катушек с током от величины протекающего по ним тока.

ПОСТАНОВКА ЗАДАЧИ

          Механическое взаимодействие контуров с током под действием силы Ампера можно представить следующим образом: один контур создает магнитное поле, которое воздействует на проводники с током второго контура и наоборот. Таким образом, задача анализа взаимодействия контуров расчленяется на две: первая – расчет магнитного поля, создаваемого первым контуром в месте расположения витков второго, и вторая – определение силы, действующей на второй контур. Задача расчета магнитного поля решается с помощью закона Био – Савара – Лапласа, который дает возможность определить индукцию магнитного поля  , создаваемого элементом   проводника с током  I  в точке  А, находящейся на расстоянии   от  

                                          ,                                            (1)

где  0 = 4 10-7 Гн/м – магнитная постоянная, - магнитная проницаемость среды (воздух - = 1,0). Векторное произведение   определяет направление  :   перпендикулярен плоскости, построенной на векторах    и   и направлен в сторону, глядя с которой, можно совместить вектор   с    кратчайшим вращением против часовой стрелки.

                                                                                           

                                      

                                                      

         На рис. 1 вектора     и    лежат в плоскости листа и согласно правилу векторного произведения вектор    перпендикулярен плоскости листа и направлен к нам. Определив с помощью закона Био – Савара – Лапласа вектор  , для каждого элемента контура проводим интегрирование по всем элементам контура.  Поскольку катушка состоит из  N  одинаковых витков,  интегрирование проведем по элементам одного витка и результат умножим на число витков  N.

                                       .                                        (2)

         Картина магнитного поля кругового контура изображена на рис. 2.

                                                                Z

                                                                                                    

                                                                                                             

                                                                                                        

                                                  R                                                  X

                                                           

                                                      I   

                                                           Рис. 2

         Видно, что поле симметрично относительно оси контура и индукция имеет две составляющих:  BZ – перпендикулярную плоскости контура и  BX – параллельную плоскости контура. В лабораторной работе второй контур расположен соосно с первым на расстоянии b от него. Результат интегрирования при  x = R  (R – радиус контура)  и  Z = b дает величину магнитной индукции в месте расположения витков второй катушки

                           .                    (3)

Здесь  Е  и  К  - эллиптические интегралы (специальные функции, зависящие от величин  R  и  b)/ Составляющая  BZ нам не понадобится.

         Рассчитав поле, приступим к определению сил. Будем опираться на закон Ампера, который позволяет определить силу    , действующей на элемент      проводника с током  I , помещенного в поле с индукцией  :

                                                                                               (4)

Направление    определяется правилом левой руки. На рис. 3 показаны силы, действующие на два произвольных, симметрично расположенных контура в магнитном поле.

                       dFZ                                                          dFZ 

                                                                                                       

                                            dFX                          dFX     

                                                                        I   

                                                           Рис. 3

         Суммарная сила, действующая на контур, получается интегрированием выражения (4) по элементам второго контура. Из рис. 3 видно, что интегрирование составляющих  dFX дает ноль (эти силы сжимают контур), а интегрирование  dFZ дает суммарную силу отталкивания. Из правила левой руки следует, что  dFZ определяется составляющей индукции  BZ:

                                            dFZ = I dl BZ  .                                                       (5)

При интегрировании учтем, что и второй контур содержит  N  витков, а  ВХ одинакова для всех элементов  dl:

                                                                             (6)

Подставляем в (6) выражение для  ВХ, получаем расчетную формулу для силы взаимодействия между контурами:

                                                               (7)

         По таблицам специальных функций найдены значения эллиптических интегралов при   R = 54 мм  и

        b = 16 мм,              Е = 1,030,           К = 3,32

        b = 26 мм,              Е = 1,065,           К = 2,87.

ОПИСАНИЕ ЛАБОРАТОРНОЙ УСТАНОВКИ

         Электромагнитную силу взаимодействия контуров с током определяют с помощью  технических весов первого класса  (рис. 1).

         

                                                                                                           4     

                                                                                                      мг

                                                          3

                                                                                                           5

                                                              b  

                                   мА                  1                                               2

                                          =

                                                                             6         

                                                                 Рис. 4

         К левому плечу коромысла подвешена катушка (1), к правому – чашка для гирь (2). Вторая катушка (3) закреплена неподвижно над первой. С помощью рукоятки (4) правое коромысло весов нагружается перегрузками от 10 до 90 мг, с помощью рукоятки (5) – от 100 до 900 мг. Питание катушек осуществляется от выпрямителя постоянного тока, величина которого может регулироваться. Круглая форма катушек имеет практический интерес, так как устройства, аналогичные описанной лабораторной установке, применяются в метрологических лабораториях для измерения силы тока абсолютным методом.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

  1.  Установите расстояние между катушками 16 мм.
  2.  Осторожным поворотом рукоятки (6) разарретируйте и уравновесьте весы.
  3.  Включите установку в сеть и установите нулевой ток.
  4.  Поворотом рукоятки (5) положите перегрузок 100 мг и, увеличивая силу тока, уравновесьте весы. Тогда сила тяжести, действующая на перегрузок, и сила взаимодействия катушек будут равны.
  5.  Силу тока, массу перегрузка и расстояние между катушками занесите в таблицу.

B =

m, (мг)

I, (А)

P = mg

I2, (A2)

F, теор

1

2

100

200

  1.  Положите перегрузок 200 мг и повторите пункты 3 и 4 и так далее до 500 мг.
  2.  Определите силу взаимодействия по силе тяжести перегрузка            P = mg. 
  3.  Найдите квадрат силы тока.
  4.  По формуле (7) рассчитайте теоретическое значение силы взаимодействия.
  5.  Установите расстояние между катушками 26 мм и повторите пункты     4 – 9.
  6.  На одном графике для двух b постройте экспериментальные и теоретические зависимости силы взаимодействия катушек от  I2.

КОНТРОЛЬНЫЕ ВОПРОСЫ

  1.  Дайте определение индукции магнитного поля. Определите ее величину в центре между катушками.
  2.  Сформулируйте законы Био – Савара – Лапласа и Ампера.
  3.  Покажите на рисунке силы взаимодействия катушек.
  4.  Выведите формулу для магнитной индукции прямого проводника с током и кругового тока.
  5.  Получите формулу для силы взаимодействия параллельных токов.
  6.  Покажите, как изменяется сила взаимодействия контуров с изменением расстояния между ними.

       

38

I

Рис. 1


 

А также другие работы, которые могут Вас заинтересовать

84481. КРАСКИ УФ-ОТВЕРЖДЕНИЯ 284.88 KB
  Состав красок УФотверждения Рассмотрим отличия в составе традиционной краски и краски УФотверждения. Традиционные краски Краски УФотверждения смола связующее олигомер растительные масла мономер минеральные масла пигмент разбавитель добавки пигмент фотоинициатор добавки стабилизатор сиккатив антисиккатив Компоненты краски влияют на физикохимические и технические характеристики УФкраски. Добавки в УФкраски играют ту же роль что и в традиционных красках. Соответственно вся энергия концентрируется на небольшом...
84482. ГИБРИДНЫЕ КРАСКИ 72.5 KB
  Гибридные краски часто рассматриваются как промежуточный продукт объединяющий в себе свойства обычных масляных и УФотверждаемых красок. Данная технология дает хороший результат но остается ряд проблем: необходимо качественное удаление противоотмарывающего порошка; межслоевая адгезия между краской и УФлаком может варьироваться изза различного содержания воска в краске различные субстраты и различная химия краски могут давать не всегда ожидаемый ре зультат; необходимость целого ряда дополнительных операций и дополнительных...
84483. ОСОБЕННОСТИ ПОДБОРА ЦВЕТА - ПРАКТИКА СМЕШЕНИЯ КРАСОК 41.79 KB
  Поэтому все большее количество типографий используют в своей работе смесевые краски. Смесевые краски позволяют добиться равномерной плашки без использования растра. Еще не так давно типографии смешивали краски сами используя опыт печатников. Современные типографии в основном заказывают необходимые для печати смесевые краски в фирмах специализирующихся на их изготовлении.
84484. ОФСЕТНАЯ ЛИСТОВАЯ ПЕЧАТЬ БЕЗ ИСПОЛЬЗОВАНИЯ ИЗОПРОПИЛОВОГО СПИРТА 43.74 KB
  Уже более 30 лет успешно применяется технология офсетной печати без использования изопропилового спирта в США где эта технология зародилась и распространилась благодаря поддержке государства и высоких требований к экологической безопасности. Вслед за Соединенными Штатами от спирта стали отказываться типографии и в Европе. На данный момент печать без использования изопропилового спирта распространена и в Европе что наглядно видно на любой европейской выставке.
84485. Поняття про рефлекс. Будова рефлекторної дуги та її ланок 43.38 KB
  Рефлекторна дуга шлях по якому передається інформація при здійсненні рефлексу. Тобто рефлекторна дуга морфологічний субстрат рефлексу. Схема найпростішої елементарної рефлекторної дуги на прикладі шкірномязового рефлексу має такий вигляд: Із схеми видно що рефлекторна дуга має такі відділи: 1. Нервовий центр структури у межах ЦНС що беруть участь у здійсненні рефлексу.
84486. Рецептори, їх класифікація та збудження 45.25 KB
  Рецептори спеціалізовані структури що забезпечують: а сприйняття інформації про дію подразника; б первинний аналіз цієї інформації сила якість час дії новизна подразника. За наявністю спеціалізованої сенсорної клітини: первинні інформація про дію подразника сприймається безпосередньо нервовим закінченням; вторинні інформації про дію подразника сприймається спеціалізованою сенсорною рецепторною клітиною а далі передається на нервове закінчення. За наявністю чи відсутністю допоміжних структур: вільні нервові закінчення ...
84487. Пропріорецептори, їх види. Будова та функції м’язових веретен 43.25 KB
  Пропріорецептори Мязів мязові веретена Суглобових сумок Сухожилків тільця Гольджі Види рецепторів Адекватний подразник Деформація Розтягнення Розтягнення Ступінь та швидкість розтягнення мязів Ступінь згинання розгинання в суглобі Ступінь та швидкість скорочення мяза так як при скороченні сухожилки розтягуються Контролюють Мязові веретена первинні механорецептори що мають складну структуру. Адекватним подразником ІФВ є розтягнення центральної частини ядерної сумки. Таке розтягнення та збудження спіралевидного нервового...
84488. Механізми і закономірності передачізбудження в центральних синапсах 44.76 KB
  Аксосоматичні Аксоаксональні Аксодендритні Дендродендритичні Збудливі Гальмівні Хімічні Електричні Механізм передачі збудження через центральний аксосоматичний хімічний синапс полягає в наступному: ПД поширюється по мембрані аксона далі по мембрані пресинаптичній підвищення проникності пресинаптичної мембрани для іонів С2 вхід їх в нервове закінчення за градієнтом концентрації вихід медіатора в синаптичну щілину дифузія медіатора до постсинаптичної мембрани взаємодія з мембранними циторецепторами збільшення...
84489. Види центрального гальмування. Механізми розвитку пре- та постсинаптичного гальмування 43.78 KB
  Механізми розвитку пре та постсинаптичного гальмування. Гальмування активний фізіологічний процес. Гальмування в ЦНС Постсинаптичне Пресинаптичне За локалізацією За електрофізіологічною природою Гіперполяризаційне Деполяризаційне За будовою нейронних ланцюгів Зворотнє Пряме Постсинаптичне гіперполяризаційне гальмування.