42160

ИЗМЕРЕНИЕ МАГНИТНОЙ ВОСПРИИМЧИВОСТИ ДИА- И ПАРАМАГНЕТИКОВ

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

4 Тогда вектор результирующей магнитной индукции будет определяться с учетом 3 и 4: 5 где 0 = 4 107 Гн м – магнитная постоянная  = 1  относительная магнитная проницаемость вещества показывающая во сколько раз изменяется магнитное поле в веществе по сравнению с магнитным полем в вакууме: ....

Русский

2013-10-27

84 KB

6 чел.

ЛАБОРАТОРНАЯ РАБОТА  №  4 – 8

ИЗМЕРЕНИЕ МАГНИТНОЙ ВОСПРИИМЧИВОСТИ

ДИА-  И  ПАРАМАГНЕТИКОВ

Цель работы:  изучение взаимодействия диа-  и парамагнетиков с магнитным полем

ПОСТАНОВКА   ЗАДАЧИ

Магнитное поле в вакууме, характеризующееся вектором магнитной индукции   , существенно изменяется при внесении в него какого-либо вещества. Это объяснятся тем, что всякое вещество является магнетиком,  то есть способно намагничиваться под действием внешнего магнитного поля. В намагниченном веществе создается свое магнитное поле,  , которое накладывается на внешнее поле  , и тогда результирующее поле внутри магнетика будет

                                                                                             (1)

Для объяснения намагниченности тел Ампер предположил, что в молекулах (атомах) вещества циркулируют круговые токи. Каждый такой ток обладает магнитным моментом    и создает в окружающем пространстве магнитное поле. В отсутствие внешнего поля в силу хаотической ориентации магнитных моментов отдельных молекул (атомов) суммарный магнитный момент тела равен нулю. Под действием поля магнитные моменты приобретают ориентацию в одном направлении, магнетик намагничивается, и его суммарный магнитный момент становится отличным от нуля.

Намагничивание магнетика характеризуется вектором намагниченности  , то есть, магнитным моментом единицы объема

                             ,                                                            (2)

где   - сумма магнитных моментов молекул, заключенных в объеме  V, взятом в окрестности рассматриваемой точки.

Экспериментально показано, что вектор   связан с вектором   в той же точке магнетика соотношением

                                       =  ,                                                           (3)    где   - магнитная восприимчивость, показывающая, как быстро с ростом поля намагничивается вещество, - величина безразмерная, так как размерности   и   совпадают. Соотношение (3) выполняется для изотропных магнетиков.

         Дополнительное поле  В! , обусловленное намагничиванием вещества, описывается выражением

                                       В1 = 0J =  0H.                                                      (4)

Тогда вектор результирующей магнитной индукции будет определяться с учетом (3) и (4):

           ,       (5)

где  0 = 4 10-7 Гн/м – магнитная постоянная,   = 1 + - относительная магнитная проницаемость вещества,  показывающая, во сколько раз изменяется магнитное поле в веществе по сравнению с магнитным полем в вакууме:

                                             .                                                      (6)

         Все вещества в магнитном отношении делятся на диамагнетики, парамагнетики и магнетики с упорядоченной магнитной структурой: ферромагнетики, антиферромагнетики и ферримагнетики

Вектор намагниченности     в диамагнетиках антипараллелен намагничивающему полю, поэтому    0, следовательно,    1. Восприимчивость диамагнетиков весьма мала  (10 –7 – 10 –4)  по абсолютной величине и не зависит от температуры. Диамагнетиками являются инертные газы, многие органические соединения (нефть, смолы, стекло, мрамор, вода, графит), некоторые металлы (висмут, медь, цинк, серебро, ртуть).

Вектор намагниченности   в парамагнетиках также пропорционален   и совпадает по направлению с намагничивающим полем, поэтому   > 0, следовательно,   > 1. Парамагнетиками являются эбонит, натрий, калий, цезий, магний, алюминий, марганец, платина, кислород, растворы солей железа и др.  Восприимчивость парамагнетиков при обычной температуре невелика (10 –3 – 10-6) и зависит от температуры.

Магнитную проницаемость вещества можно определить по силе, действующей на образец, помещенный в неоднородное магнитное поле.

Пусть магнетик в форме цилиндра (рис. 1) втягивается в магнитное поле электромагнита с силой  F  на расстояние  dy. При этом совершается работа

                                     dA = F dy ,                                                          (7)

которая производится за счет затраченной энергии магнитного поля. Плотность энергии магнитного поля (энергия единицы объема) определяется выражением

                                                .                                                       (8)

После замены   = 1 + и подстановки ее в (8), получим

               .                    (9)

Первое слагаемое определяет плотность энергии магнитного поля в вакууме ( = 1) между полюсами электромагнита. При заданном токе и неизменном объеме межполюсного пространства эта составляющая энергии постоянна  (W = w dV = const). 

Второе слагаемое определяет плотность энергии взаимодействия магнетика с магнитным полем. При втягивании магнетика в поле электромагнита на величину «dy» намагниченный объем прирастет на величину  dV = S dy (S – площадь сечения цилиндрического образца). Изменение энергии при этом составит

                              .                            (10)

Учитывая, что работа производится за счет энергии магнитного поля, то есть  dA = dW,  а    (d – диаметр образца), получим из (7)  и  (10)  выражение для силы, действующей на образец

                            ,                                      (11)

так как магнитная индукция в вакууме  В0 = 0Н, то выражение для магнитной восприимчивости будет иметь вид

                                                   .                                                    (12)

         Пренебрегая вкладом воздуха в величину магнитной индукции, можем принять, что  В0 = В – магнитной индукции между полюсами электромагнита. При выводе формулы (12) были сделаны упрощающие положения о том, что напряженности магнитного поля в образце и воздухе совпадают, а также, что распределение магнитного поля не зависит от передвижения образца, поэтому формула (12) не является вполне точной.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

ВНИМАНИЕ!   ВЕСЫ АНАЛИТИЧЕСКИЕ!   ОБРАЩАТЬСЯ ОСТОРОЖНО!   ЧИТАЙТЕ ПРАВИЛА ПОЛЬЗОВАНИЯ ВЕСАМИ!

Схема установки приведена на рис. 2.

Упражнение 1. Измерение величины магнитной индукции.

         1. К зажимам милливеберметра (1) подключите концы измерительной катушки и установите ее в зазор электромагнита (3), как показано на рис. 2 (питание электромагнита должно быть отключено).

         2. Включите питание электромагнита.

         3. С помощью регулятора напряжения  (4)  выпрямителя установите ток возбуждения 0,2 А.

         4. Поставьте переключатель милливеберметра М 119 (нажмите кнопку Ф 192) в положение «Корректор» («Установка нуля») и установите стрелку прибора на нулевое деление.

         5. Переведите переключатель  в положение «Измерение» (нажмите кнопку «Измерение»).

         6. Выдернув катушку из зазора электромагнита, запишите показания милливеберметра ().

         7. Повторите пункты «3 – 6» для других токов возбуждения.

         8. Полученные результаты измерений занесите в табл. 1.

                                                                                                             Таблица 1

Ток возбуждения, А

(мВб)

Индукция, В (Тл)

0,2

0.4

0,6

0,8

         9. Рассчитайте магнитную индукцию по формуле  , где  S – площадь сечения катушки в  м2,   - потокосцепление,  N – число витков катушки.

         10. Постройте график зависимости величины магнитной индукции от тока возбуждения.

Упражнение 2. Определение магнитной восприимчивости вещества.

  1.  Уберите измерительную катушку из зазора электромагнита.
  2.  Подвесьте к весам (5) один из образцов и уравновесьте весы с помощью разновесок (6), то есть найдите массу образца с подвесом  m0. Ток возбуждения при этом равен нулю.
  3.  Включите  ток 0,4 А в цепи электромагнита и опять уравновесьте весы, то есть найдите массу образца с подвесом  m.
  4.  Дополнительную силу, действующую на образец, определите по формуле  F = (m – m0) g.  Измерьте дополнительную силу при токах возбуждения 0,6 А  и  0,8 А.
  5.  Повторите аналогичные измерения для каждого образца. Результаты измерений занесите в табл. 2.

                                                                                                              Таблица 2

Образец

В. Тл

I, А

m, кг

F=(m-m0)g

H

 ср

=1+СР

Висмут

m0 =

d =

0,4

0,6

0,8

Алюминий

m0 =

d =

0,4

0,6

0,8

Эбонит

m0 =

d =

0,4

0,6

0,8

  1.  Измерьте диаметр  d  каждого образца штангенциркулем.
  2.  По формуле (12) найдите среднее значение магнитной восприимчивости, а затем магнитной проницаемости каждого образца, используя значения магнитной индукции из таблицы 1.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Как разделяются вещества по своим магнитным свойствам и чем они отличаются? В чем состоит процесс намагничивания?

3. Что называется вектором намагничивания?

4. Какой физический смысл магнитной восприимчивости и магнитной проницаемости?

6. Как измеряется величина магнитной индукции с помощью милливеберметра?

7. В чем состоит метод измерения магнитной проницаемости вещества в данной работе?

8. Явление диамагнетизма, парамагнетизма.

43


y

dy

S

Рис. 1

+-

A

7

6

5

4

3

S

N

2

1

Рис. 2


 

А также другие работы, которые могут Вас заинтересовать

48705. Анализ технических возможностей способов сварки плавлением барабана изготовленного из стали 10 216 KB
  Введение Сварка широко применяется в основных отраслях производства так как резко сокращает сроки выполнения работ и трудоемкость производственных процессов. Сварка позволяет уменьшить затраты на единицу продукции сократить длительность производственного цикла улучшить качество изделий. Для данного изделия возможны следующие способы сварки плавлением: ручная дуговая сварка; сварка в защитных газах плавящимся электродом; –плазменная сварка; лазерная сварка; электроннолучевая сварка; газовая сварка. ручная дуговая сварка покрытым...
48706. Сохранение и укрепление здоровья обслуживаемого населения 903.5 KB
  Номер – тип: int Тип стрипа – тип: int 8луночные и 12луночные Режим измерения – тип: chr измерение оптической плотности Единицы измерения – тип: chr бел Выходные значения анализатора Объект представляет собой строку байт. Тип – тип: byte Преобразованные значения Объект представляет собой данные строкового формата. Тип – тип: chr Документы предметной области также представлены в виде классов. Номер – тип: int Дата – тип: dte ФИО – тип: chr Возраст – тип: int Учреждение – тип: chr Отделение – тип: chr Исследовать – тип: chr Диагноз...
48707. Генеалогическое древо. Информационная система 3.95 MB
  Прежде чем приступать к разработке информационной системы, необходимо представить себе схему настоящего генеалогического древа. Генеалогическое древо - схематичное представление родственных связей, родословной росписи в виде условно-символического «дерева»
48708. Стратегическое планирование на ОАО «МТС» 1.13 MB
  О предприятии ОАО МТС. В курсовой работе в качестве исследуемого предприятия была выбрана компания ОАО МТС в качестве продукта – мобильный телефон. ОАО Мобильные ТелеСистемы МТС российская телекоммуникационная компания оператор сотовой связи в форматах GSM и UMTS оказывающая услуги в России странах СНГ и Индии под торговой маркой МТС. Компания МТС образована как закрытое акционерное общество в октябре 1993 года такими компаниями как ОАО Московская городская телефонная сеть МГТС Deutsсhe Telecom DeTeMobil...
48711. Разработка информационной системы по учету заявлений 1.66 MB
  Типовые бизнеспроцессы требующие автоматизации. Содержание бизнеспроцесса Подготовка докладов выступлений обращений состоит из последовательного выполнения шести действий: Подбор данных и материалов для обобщений докладов выступлений Создание отчета о количестве принятых заявлений определенной судьей Создание отчета в котором отображаются заявления по их типу Создание отчета о количестве сформированных дел Создание отчета о делах по которым уже было вынесено решение Составление плана обобщения доклада...
48712. Электрический расчет основных режимов работы сети 2.08 MB
  Схема выбирается по экономическому расчету, который содержит: расчет наиболее экономичного строительства, расчет передачи энергии как от РЭС, так и от подстанций к друг другу. Из четырех вариантов схем, будет выбрана одна – наиболее экономичная. Для которой будет выполнен, электрический расчет основных режимов работы сети.
48713. Проект железобетонного моста под железную дорогу 713 KB
  Предполагая применение устоев обсыпного типа и учитывая, что отверстие моста составляет 68 м, намечена пятипролетная схема моста с разрезными типовыми балками 516,5 м. Необходимая длина моста между крайними точками устоев