42162

ИЗУЧЕНИЕ ВЫНУЖДЕННЫХ КОЛЕБАНИЙ В КОНТУРЕ

Лабораторная работа

Физика

Явление резонанса в колебательном контуре. 6 Графики зависимости I0 = f  при различных значениях сопротивления R называемые резонансными кривыми колебательного контура представлены на рис. Эта амплитуда как видно из 5 будет максимальна при частоте отвечающей условию и называемой резонансной частотой РЕЗ. Выражая отсюда РЕЗ получаем .

Русский

2013-10-27

134 KB

1 чел.

ЛАБОРАТОРНАЯ   РАБОТА   №   4 – 11

ИЗУЧЕНИЕ ВЫНУЖДЕННЫХ КОЛЕБАНИЙ В КОНТУРЕ.

         Цель работы - изучение вынужденных колебаний в колебательном контуре под воздействием гармонически изменяющейся ЭДС и исследование зависимости амплитуды и фазы колебаний от частоты.

ПОСТАНОВКА ЗАДАЧИ

         Колебательная система, выведенная из положения равновесия, начинает колебаться с собственной частотой. Однако во многих случаях, система не просто колеблется сама по себе, а испытывает еще действие внешней, периодически изменяющейся силы, под действием которой система совершает вынужденные колебания.

  1.  Явление резонанса в колебательном контуре.

         Электрические вынужденные колебания осуществляются в колебательном контуре содержащем последовательно включенный источник ЭДС  E (t), емкость  С,  индуктивность  L и омическое сопротивление  R (рис.1).

                                                        Используя закон Ома, получим для цепи

     L                                                колебательного контура выражение    

                                  С                                = E (t) - ,                (1)

     R                                               где  IR – падение напряжения на актив -       

                            E (t)                 ном сопротивлении  R, q/C – падение на-

                      Рис. 1                      пряжения на емкости, - ЭДС самоиндукции,  E(t) – внешний источник ЭДС. Учитывая, что ЭДС изменяется по гармоническому закону   E(t) = E0 Cost, а  и   , преобразуем уравнение (1) в виде

                              E0 Cost,                                  (2)

где   - коэффициент затухания свободных колебаний в контуре,

- частота собственных колебаний контура,

- частота колебаний вынуждающей ЭДС.

         Спустя некоторое время после подключения источника ЭДС в контуре устанавливаются вынужденные колебания с постоянной амплитудой. Установившиеся вынужденные колебания заряда и силы тока описываются уравнениями (3 – 5), которые являются решением дифференциального уравнения (2).

                                            q = q0 Cos (t + 0),                                           (3)

                           .                     (4)

Амплитуда силы тока  I0 = q0  и начальная фаза   находятся по формулам

                                      ,                                        (5)                                                           

                                           .                                                 (6)

Графики зависимости  I0 = f () при различных значениях сопротивления  R , называемые резонансными кривыми колебательного контура, представлены на рис. 2.

                                                         R3  R2  R1

                  I0                                              

                                                0                                   

                                             Рис. 2

         Из формулы (5) следует, что амплитуда силы тока в контуре  I0 зависит от частоты    питающего напряжения. Эта амплитуда, как видно из (5),  будет максимальна при частоте, отвечающей условию   и называемой резонансной частотой  РЕЗ. Выражая отсюда  РЕЗ, получаем

                                      .                                                   (7)

         Таким образом, частота внешней вынуждающей ЭДС станет равной частоте собственных колебаний контура.

         Резонансная циклическая частота не зависит от сопротивления  R. Амплитуда силы тока при резонансе равна  . Амплитуда падения напряжения на конденсаторе равна амплитуде падения напряжения на индуктивности (ЭДС самоиндукции) Действительно,

,

         При  R = 0 резонансный пик (амплитуда силы тока  I0 ) уходит в бесконечность. При этом энергия постоянно вводится в систему и не рассеивается. В реальных системах сопротивление и потери энергии никогда не равны нулю, поэтому резонансный пик имеет конечную высоту.

         Сила тока в цепи и ЭДС  могут не совпадать по фазе. В каждый момент времени напряжение, приложенное извне, равно сумме напряжений на отдельных элементах контура:

                                     UR + UL + UC = E0 Cos t,                                     (8)

                       UR = IR = URo Cos (t - ),               URo = IR,                (9)

               ,         ULo = I0L,              (10)

                 ,            ,                (11)

где  URo, ULo, UCo – амплитудные значения напряжения на соответствующих элементах цепи.

         Емкость и индуктивность в цепях переменного тока обладают сопротивлением, которое называют реактивным. Реактивное сопротивление емкости (емкостное сопротивление)  ХС  и индуктивности (индуктивное сопротивление)  ХL  определяется по аналогии с омическим сопротивлением  R в законе Ома как коэффициент пропорциональности между напряжением и силой тока: для конденсатора – UCo = I0XC, для индуктивности – ULo = I0XL. Емкостное реактивное сопротивление конденсатора с повышением частоты уменьшается   , а индуктивное сопротивление – увеличивается  (XL = L).

         Сопоставление формул (4), (9), (10) и (11) показывает фазовое соотношение между силой тока и напряжением на каждом элементе контура:  UR совпадает по фазе с током,  UL опережает ток на , UC отстает от тока на .

         Наглядно представить фазовые соотношения можно методом векторных диаграмм  (рис. 3).  При этом каждое напряжение представляется в виде вектора в прямоугольной системе координат  XY. Длина вектора характеризует амплитудное значение напряжения на соответствующем элементе цепи, а направление вектора образует с осью  Х, в качестве которой выбрана ось токов, угол, равный начальной фазе колебаний.

                                       Y

                                

                                                                         

                                                                              

                                                                                                           X  

                                   I0                                     

                                            

                                          Рис. 3.

         Из прямоугольного треугольника, образованного на диаграмме векторами  ,  и , легко получить формулы (5) и (6) , а также определить импеданс  Z  (полное сопротивление) цепи с помощью соотношения

           ,

откуда

                                   .                                            (12)

Фазочастотная характеристика колебательного контура приведена на рис. 4.

  •  0 = R1  R2  R3    

                  /2  

                                                      0                              

                - /2

                                                       Рис. 4

         При резонансе, согласно (6), сдвиг фаз между силой тока и ЭДС  (рез) = 0. Если   0, то    0, то есть сила тока опережает ЭДС по фазе и тем сильнее, чем меньше   ( = - /2 при = 0). Если    0, то   0, то есть сила тока отстает по фазе от ЭДС и тем сильнее, чем больше   (  /2, при   ).

Упражнение 1. Измерение сдвига фаз.

         Для измерения сдвига фаз используется метод сложения взаимно перпендикулярных колебаний одинаковой частоты (метод фигур Лиссажу). На горизонтально отклоняющие пластины электронного осциллографа подается один синусоидальный сигнал, а на вертикально отклоняющие – другой.

         Пусть нужно измерить сдвиг фаз между двумя напряжениями  U1 и  U2  одинаковой частоты. Подадим эти напряжения на вход «Х» и «Y» осциллографа. Смещение луча по горизонтали определяется выражением

x = x0 Cos t, смещение по вертикали -  y = y0 Cos (t + ), где - сдвиг фаз между напряжениями  U1 и  U2, x0, y0 – амплитуды напряжений U1 и  U2, умноженные на коэффициенты усиления соответствующих каналов осциллографа. Исключая время t в вышеприведенных уравнениях, путем соответствующих тригонометрических преобразований получим

                             .                                     (13)

Это математическое выражение эллипса, описываемого электронным лучом на экране осциллографа (рис. 5). Ориентация эллипса относительно координатных осей  Х  и  Y  зависит как от угла  , так и от усиления каналов осциллографа.

                                              Y

                                                                  a       b               X

                                                     Рис. 5

         Из уравнения (13) следует, что измеряя отношение x/x0  или  y/y0, можно определить сдвиг фаз  .  Так при  x = 0 имеем

                     ,              .                 (14)  

Положительные и отрицательные значения   на экране осциллографа неотличимы  (эти значения отличаются друг от друга направлением движения электронного луча, описывающего эллипс).

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

         В состав лабораторной установки входит кассета «Вынужденные колебания» (ФПЭ – 11/10), магазин сопротивлений  R, магазин емкостей  С, источник питания, низкочастотный генератор и осциллограф. Блок – схема установки изображена на рис. 6.

                                                                                               R

                                                                                               C    Y    

                    МС                                  МЕ

                                                                                                      X

                                                                                             PQ

                                                                                        

                  ГЗ                          220 В                  осциллограф

                                                                          «вход» «вход синхр.»          

                                                        Рис. 6

         Для возбуждения колебаний в электрический контур, состоящий из катушки индуктивности  (L = 100 5 мГн), магазина емкостей  С  и магазина сопротивлений  R, с генератора частоты подается переменное напряжение. Последовательно с элементами контура включен резистор       ( R1 = 0,75 Ом), напряжение с которого подается на вход «Y» осциллографа. Это напряжение пропорционально току в контуре и находится с ним в одной фазе. На вход «Х» осциллографа подается напряжение с клемм генератора.

 Упражнение 1. Исследование зависимости амплитуды колебаний от частоты.

  1.  Соберите схему, изображенную на рис 6, отключив сигнал на вход «Х» осциллографа (поставьте переключатель осциллографа из положения «Х» в положение “    “). Колебательный контур подключите к гнезду генератора “          “ .
  2.  Установите значение емкости  С = 0,1 – 1,0 мкФ (по указанию преподавателя) и сопротивление  R = 1 Ом
  3.  После проверки схемы преподавателем включите в сеть электронный осциллограф и звуковой генератор. Прогрейте приборы в течение 5 – 10 мин.
  4.  Определите (в домашней заготовке) по значению L = 100 мГн и заданному значению  С  циклическую резонансную частоту контура  РЕЗ  по формуле (7) и частоту  РЕЗ = /2.
  5.  Выходное напряжение генератора установите вращением ручки   

           . Установите переключатель множителя частоты  в положение 102.

  1.  Изменяя частоту звукового генератора с помощью ручки «Частота» в диапазоне около найденного значения  РЕЗ, добейтесь максимальной амплитуды колебаний. Регулируя величину усиления по вертикали, получите картину синусоидальных колебаний на экране осциллографа.
  2.  Измерьте на экране осциллографа в делениях вертикальной шкалы амплитуду колебаний напряжения на сопротивлении в контуре. Используя коэффициент усиления осциллографа  КУС  по оси  «Y», рассчитайте амплитуду колебаний  UРЕЗ в вольтах. Полученные значения  UРЕЗ  и  РЕЗ занесите в табл. 1.

Таблица   1

п/п

R = 1 Ом

R = 100 Ом

R = 200 Ом

UРЕЗ =          РЕЗ =

UРЕЗ =          РЕЗ =

UРЕЗ =          РЕЗ =

,

Гц

U

,

Гц

U

,

Гц

U

дел.

В

дел.

В

дел.

В

1

2

3

16

  1.  Меняя частоту генератора вблизи РЕЗ в интервале (0,4 – 1,6) РЕЗ, провести 10 замеров амплитуды, а вдали в интервалах (0 – 0,4) РЕЗ  и (1,6 – 2) РЕЗ  по 3 замера.
  2.  Провести аналогичные измерения при других значения сопротивления R = 100 Ом и 200 Ом. Результаты измерений занести в табл. 1.
  3.  По полученным экспериментальным данным построить резонансные кривые  U = f() для трех значений сопротивления  R. Пользуясь полученными графиками, определить резонансную частоту  РЕЗ и сравнить ее с полученной теоретически.

Упражнение 2. Построение фазочастотной характеристики.

1. Соберите схему, изображенную на рис. 6. Колебательный контур подключите к гнезду генератора «          ». Подайте на вход «Х» осциллографа  напряжение с клемм звукового генератора (Поставьте переключатель осциллографа из положения  «      » в положение «Х»).

2 – 5. Аналогичны соответствующим пунктам задания 1.

6. Регулируя усиление осциллографа по оси «Y» и входное напряжение звукового генератора с помощью ручки «          », получите одинаковую величину сигнала по оси  «Х»  и  «Y». На экране появятся фигуры Лиссажу в виде эллипса (рис. 5).

7. Подбирая частоту генератора вращением ручки «Частота  Hz», добейтесь резонанса. При резонансе сдвиг фаз   = 0 и эллипс вырождается в прямую линию. Полученное значение  РЕЗ занесите в табл. 2.

Таблица 2

, Гц

1

2

3

4

   15

R = 1 Ом

РЕЗ =   Гц

а, дел

b, дел

a/b

, град

R = 100 Ом

РЕЗ =   Гц

а, дел

b, дел

a/b

, град

R = 200 Ом

РЕЗ =   Гц

а, дел

b, дел

a/b

, град

8. Меняя частоту   по обе стороны от резонансного значения, измерьте отрезки  «а»  и  «b» в делениях  (рис. 5). Измерение проведите для 14 – 15 значений частоты звукового генератора, причем отсчет делайте с интервалом 50 Гц вблизи резонансного значения и с интервалом 100 Гц вдали от него.

9. Провести измерения по пунктам 6 – 8 при других значениях сопротивления  R = 100 Ом и 200 Ом. Результаты занести в табл. 2.

  1.  Рассчитайте по формуле (10) сдвиг фаз между током в контуре и напряжением на входе контура. Результаты занесите в табл. 2.
  2.  На основании полученных результатов постройте графики зависимости   = f () при заданных значениях сопротивления  R.

КОНТРОЛЬНЫЕ  ВОПРОСЫ

  1.  Что такое колебание? Какие колебания называются вынужденными?
  2.  Дайте понятие основных характеристик колебательного движения (амплитуда, частота, период, фаза).
  3.  Элементы электрического колебательного контура. Опишите физические процессы, происходящие в контуре. Для каких целей используется колебательный контур?
  4.  Получите дифференциальное уравнение вынужденных колебаний.
  5.  Как частота питающего напряжения влияет на величину активного, емкостного и индуктивного сопротивлений, а также импеданса колебательного контура
  6.  Нарисуйте фазочастотную характеристику колебательного контура и объясните, какой смысл имеет знак сдвига фаз? Можно ли, зная Cos , сделать вывод о том, что наблюдается в цепи резонанс или нет?

58

  1.  

 

А также другие работы, которые могут Вас заинтересовать

49109. Архитектура и системы команд микропроцессора К580. Достоинства и недостатки ассемблера 119.5 KB
  Недостатки ассемблера ВВЕДЕНИЕ Достоинства ассемблера Обеспечение максимального использования специфических возможностей конкретной платформы что позволяет создавать более эффективные программы с меньшими затратами ресурсов. АНАЛИЗ ЗАДАЧИ И РАЗРАБОТКА АЛГОРИТМА В результате выполнения программы мы должны получить в регистре В значение равное 0. РАЗРАБОТКА СТРУКТУРЫ ПРОГРАММЫ Для реализации поставленной задачи нужно запомнить входные данные В программе осуществляется последовательное увеличение содержимого ячейки 6000h на 1 путем...
49110. Загрузить в ячейку памяти с адресом 6000h число 100 и уменьшать его на единицу, пока результат не станет равен нулю 146.5 KB
  Именно языки программирования высокого уровня и их наследники в основном используются в настоящее время в индустрии информационных технологий. Однако, языки ассемблера сохраняют свою нишу, обуславливаемую их уникальными преимуществами в части эффективности и возможности полного использования специфических средств конкретной платформы.
49111. Вычесть содержимое ячейки памяти с адресом 6001H из содержимого ячейки памяти с адресом 6000Н. Занести результат в ячейку памяти с адресом 6002H, если результат положительный, иначе — в ячейку 6003Н 433 KB
  Директивы ассемблера позволяют включать в программу блоки данных (описанные явно или считанные из файла); повторить определённый фрагмент указанное число раз; компилировать фрагмент по условию; задавать адрес исполнения фрагмента, менять значения меток в процессе компиляции; использовать макроопределения с параметрами и др.
49113. Диэлектрическая линзовая антенна 1.83 MB
  Расчёт параметров линзы. Линзовые антенны представляют собой совокупность электромагнитной линзы и облучателя. В основе проектирования линзовых антенн лежит использование оптических свойств электромагнитных волн которые проявляются при размерах и радиусах кривизны поверхности линзы много больших длины волны. Сейчас зачастую используются металлодиэлектрические линзы которые обладают лучшими массогабаритными показателями но при этом коэффициент преломления таких линз оказывается сильно зависящим...
49114. Диэлектрическая линзовая антенна 590 KB
  Краткие теоретические сведения Расчет параметров линзы Расчёт облучателя Расчет диаграммы направленности антенны Конструкция антенны Заключение Список используемой литературы Задание Краткие теоретические сведения Линзовая антенна состоит из электромагнитной линзы и облучателя. Назначение линзы трансформировать фронт волны создаваемый облучателем в плоский и сформировать требуемую диаграмму направленности ДН. Принцип работы линзовых антенн основан на...
49115. Волноводно-щелевая антенна (ВЩА) 315.5 KB
  Волноводно-щелевые линейные антенны обеспечивают сужение диаграммы направленности ДН в плоскости проходящей через ось волновода. Волноводно-щелевые антенны имеют следующие достоинства: отсутствие выступающих частей позволяет совместить их излучающую поверхность с внешней поверхностью корпуса летательного аппарата при этом не вносится дополнительное аэродинамическое сопротивление бортовая антенна; возможность реализации оптимальных ДН так как законы распределения поля в раскрыве различны изза изменения связи излучателей с...
49116. Проект электропривод для машины, состоящей из электродвигателя, клиноременной передачи и рабочего органа 1.04 MB
  Характерной особенностью работы механических КШМ является резко пиковый характер нагрузки поэтому в приводах этих машин необходимо исключительно увеличить маховой момент путем установления специального накопителя энергии маховика. В этом случае резисторы в роторной цепи электродвигателя выполняют одновременно две задачи: Дают возможность в зависимости от характера рабочей операции установить необходимое скольжение а следовательно и оптимальный режим работы системы маховикэлектродвигатель; Улучшают пусковые условия при первоначальном...
49117. АНАЛИЗ И СИНТЕЗ ФИЛЬТРОВ 302 KB
  Схема исследуемого фильтра Для данного звена требуется: Найти передаточную функцию по напряжению Найденную передаточную функцию представить в виде отношения двух полиномов коэффициенты которых выражены через параметры элементов цепи в общем виде; ту же функцию записать с вычисленными значениями коэффициентов полиномов числителя и знаменателя; вычислить значение добротности полюса. Составим узловые уравнения: Подставив данные в выражение Hp получим передаточную функцию в численном виде: Заменив р на iw в операторной передаточной...