42162

ИЗУЧЕНИЕ ВЫНУЖДЕННЫХ КОЛЕБАНИЙ В КОНТУРЕ

Лабораторная работа

Физика

Явление резонанса в колебательном контуре. 6 Графики зависимости I0 = f  при различных значениях сопротивления R называемые резонансными кривыми колебательного контура представлены на рис. Эта амплитуда как видно из 5 будет максимальна при частоте отвечающей условию и называемой резонансной частотой РЕЗ. Выражая отсюда РЕЗ получаем .

Русский

2013-10-27

134 KB

1 чел.

ЛАБОРАТОРНАЯ   РАБОТА   №   4 – 11

ИЗУЧЕНИЕ ВЫНУЖДЕННЫХ КОЛЕБАНИЙ В КОНТУРЕ.

         Цель работы - изучение вынужденных колебаний в колебательном контуре под воздействием гармонически изменяющейся ЭДС и исследование зависимости амплитуды и фазы колебаний от частоты.

ПОСТАНОВКА ЗАДАЧИ

         Колебательная система, выведенная из положения равновесия, начинает колебаться с собственной частотой. Однако во многих случаях, система не просто колеблется сама по себе, а испытывает еще действие внешней, периодически изменяющейся силы, под действием которой система совершает вынужденные колебания.

  1.  Явление резонанса в колебательном контуре.

         Электрические вынужденные колебания осуществляются в колебательном контуре содержащем последовательно включенный источник ЭДС  E (t), емкость  С,  индуктивность  L и омическое сопротивление  R (рис.1).

                                                        Используя закон Ома, получим для цепи

     L                                                колебательного контура выражение    

                                  С                                = E (t) - ,                (1)

     R                                               где  IR – падение напряжения на актив -       

                            E (t)                 ном сопротивлении  R, q/C – падение на-

                      Рис. 1                      пряжения на емкости, - ЭДС самоиндукции,  E(t) – внешний источник ЭДС. Учитывая, что ЭДС изменяется по гармоническому закону   E(t) = E0 Cost, а  и   , преобразуем уравнение (1) в виде

                              E0 Cost,                                  (2)

где   - коэффициент затухания свободных колебаний в контуре,

- частота собственных колебаний контура,

- частота колебаний вынуждающей ЭДС.

         Спустя некоторое время после подключения источника ЭДС в контуре устанавливаются вынужденные колебания с постоянной амплитудой. Установившиеся вынужденные колебания заряда и силы тока описываются уравнениями (3 – 5), которые являются решением дифференциального уравнения (2).

                                            q = q0 Cos (t + 0),                                           (3)

                           .                     (4)

Амплитуда силы тока  I0 = q0  и начальная фаза   находятся по формулам

                                      ,                                        (5)                                                           

                                           .                                                 (6)

Графики зависимости  I0 = f () при различных значениях сопротивления  R , называемые резонансными кривыми колебательного контура, представлены на рис. 2.

                                                         R3  R2  R1

                  I0                                              

                                                0                                   

                                             Рис. 2

         Из формулы (5) следует, что амплитуда силы тока в контуре  I0 зависит от частоты    питающего напряжения. Эта амплитуда, как видно из (5),  будет максимальна при частоте, отвечающей условию   и называемой резонансной частотой  РЕЗ. Выражая отсюда  РЕЗ, получаем

                                      .                                                   (7)

         Таким образом, частота внешней вынуждающей ЭДС станет равной частоте собственных колебаний контура.

         Резонансная циклическая частота не зависит от сопротивления  R. Амплитуда силы тока при резонансе равна  . Амплитуда падения напряжения на конденсаторе равна амплитуде падения напряжения на индуктивности (ЭДС самоиндукции) Действительно,

,

         При  R = 0 резонансный пик (амплитуда силы тока  I0 ) уходит в бесконечность. При этом энергия постоянно вводится в систему и не рассеивается. В реальных системах сопротивление и потери энергии никогда не равны нулю, поэтому резонансный пик имеет конечную высоту.

         Сила тока в цепи и ЭДС  могут не совпадать по фазе. В каждый момент времени напряжение, приложенное извне, равно сумме напряжений на отдельных элементах контура:

                                     UR + UL + UC = E0 Cos t,                                     (8)

                       UR = IR = URo Cos (t - ),               URo = IR,                (9)

               ,         ULo = I0L,              (10)

                 ,            ,                (11)

где  URo, ULo, UCo – амплитудные значения напряжения на соответствующих элементах цепи.

         Емкость и индуктивность в цепях переменного тока обладают сопротивлением, которое называют реактивным. Реактивное сопротивление емкости (емкостное сопротивление)  ХС  и индуктивности (индуктивное сопротивление)  ХL  определяется по аналогии с омическим сопротивлением  R в законе Ома как коэффициент пропорциональности между напряжением и силой тока: для конденсатора – UCo = I0XC, для индуктивности – ULo = I0XL. Емкостное реактивное сопротивление конденсатора с повышением частоты уменьшается   , а индуктивное сопротивление – увеличивается  (XL = L).

         Сопоставление формул (4), (9), (10) и (11) показывает фазовое соотношение между силой тока и напряжением на каждом элементе контура:  UR совпадает по фазе с током,  UL опережает ток на , UC отстает от тока на .

         Наглядно представить фазовые соотношения можно методом векторных диаграмм  (рис. 3).  При этом каждое напряжение представляется в виде вектора в прямоугольной системе координат  XY. Длина вектора характеризует амплитудное значение напряжения на соответствующем элементе цепи, а направление вектора образует с осью  Х, в качестве которой выбрана ось токов, угол, равный начальной фазе колебаний.

                                       Y

                                

                                                                         

                                                                              

                                                                                                           X  

                                   I0                                     

                                            

                                          Рис. 3.

         Из прямоугольного треугольника, образованного на диаграмме векторами  ,  и , легко получить формулы (5) и (6) , а также определить импеданс  Z  (полное сопротивление) цепи с помощью соотношения

           ,

откуда

                                   .                                            (12)

Фазочастотная характеристика колебательного контура приведена на рис. 4.

  •  0 = R1  R2  R3    

                  /2  

                                                      0                              

                - /2

                                                       Рис. 4

         При резонансе, согласно (6), сдвиг фаз между силой тока и ЭДС  (рез) = 0. Если   0, то    0, то есть сила тока опережает ЭДС по фазе и тем сильнее, чем меньше   ( = - /2 при = 0). Если    0, то   0, то есть сила тока отстает по фазе от ЭДС и тем сильнее, чем больше   (  /2, при   ).

Упражнение 1. Измерение сдвига фаз.

         Для измерения сдвига фаз используется метод сложения взаимно перпендикулярных колебаний одинаковой частоты (метод фигур Лиссажу). На горизонтально отклоняющие пластины электронного осциллографа подается один синусоидальный сигнал, а на вертикально отклоняющие – другой.

         Пусть нужно измерить сдвиг фаз между двумя напряжениями  U1 и  U2  одинаковой частоты. Подадим эти напряжения на вход «Х» и «Y» осциллографа. Смещение луча по горизонтали определяется выражением

x = x0 Cos t, смещение по вертикали -  y = y0 Cos (t + ), где - сдвиг фаз между напряжениями  U1 и  U2, x0, y0 – амплитуды напряжений U1 и  U2, умноженные на коэффициенты усиления соответствующих каналов осциллографа. Исключая время t в вышеприведенных уравнениях, путем соответствующих тригонометрических преобразований получим

                             .                                     (13)

Это математическое выражение эллипса, описываемого электронным лучом на экране осциллографа (рис. 5). Ориентация эллипса относительно координатных осей  Х  и  Y  зависит как от угла  , так и от усиления каналов осциллографа.

                                              Y

                                                                  a       b               X

                                                     Рис. 5

         Из уравнения (13) следует, что измеряя отношение x/x0  или  y/y0, можно определить сдвиг фаз  .  Так при  x = 0 имеем

                     ,              .                 (14)  

Положительные и отрицательные значения   на экране осциллографа неотличимы  (эти значения отличаются друг от друга направлением движения электронного луча, описывающего эллипс).

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

         В состав лабораторной установки входит кассета «Вынужденные колебания» (ФПЭ – 11/10), магазин сопротивлений  R, магазин емкостей  С, источник питания, низкочастотный генератор и осциллограф. Блок – схема установки изображена на рис. 6.

                                                                                               R

                                                                                               C    Y    

                    МС                                  МЕ

                                                                                                      X

                                                                                             PQ

                                                                                        

                  ГЗ                          220 В                  осциллограф

                                                                          «вход» «вход синхр.»          

                                                        Рис. 6

         Для возбуждения колебаний в электрический контур, состоящий из катушки индуктивности  (L = 100 5 мГн), магазина емкостей  С  и магазина сопротивлений  R, с генератора частоты подается переменное напряжение. Последовательно с элементами контура включен резистор       ( R1 = 0,75 Ом), напряжение с которого подается на вход «Y» осциллографа. Это напряжение пропорционально току в контуре и находится с ним в одной фазе. На вход «Х» осциллографа подается напряжение с клемм генератора.

 Упражнение 1. Исследование зависимости амплитуды колебаний от частоты.

  1.  Соберите схему, изображенную на рис 6, отключив сигнал на вход «Х» осциллографа (поставьте переключатель осциллографа из положения «Х» в положение “    “). Колебательный контур подключите к гнезду генератора “          “ .
  2.  Установите значение емкости  С = 0,1 – 1,0 мкФ (по указанию преподавателя) и сопротивление  R = 1 Ом
  3.  После проверки схемы преподавателем включите в сеть электронный осциллограф и звуковой генератор. Прогрейте приборы в течение 5 – 10 мин.
  4.  Определите (в домашней заготовке) по значению L = 100 мГн и заданному значению  С  циклическую резонансную частоту контура  РЕЗ  по формуле (7) и частоту  РЕЗ = /2.
  5.  Выходное напряжение генератора установите вращением ручки   

           . Установите переключатель множителя частоты  в положение 102.

  1.  Изменяя частоту звукового генератора с помощью ручки «Частота» в диапазоне около найденного значения  РЕЗ, добейтесь максимальной амплитуды колебаний. Регулируя величину усиления по вертикали, получите картину синусоидальных колебаний на экране осциллографа.
  2.  Измерьте на экране осциллографа в делениях вертикальной шкалы амплитуду колебаний напряжения на сопротивлении в контуре. Используя коэффициент усиления осциллографа  КУС  по оси  «Y», рассчитайте амплитуду колебаний  UРЕЗ в вольтах. Полученные значения  UРЕЗ  и  РЕЗ занесите в табл. 1.

Таблица   1

п/п

R = 1 Ом

R = 100 Ом

R = 200 Ом

UРЕЗ =          РЕЗ =

UРЕЗ =          РЕЗ =

UРЕЗ =          РЕЗ =

,

Гц

U

,

Гц

U

,

Гц

U

дел.

В

дел.

В

дел.

В

1

2

3

16

  1.  Меняя частоту генератора вблизи РЕЗ в интервале (0,4 – 1,6) РЕЗ, провести 10 замеров амплитуды, а вдали в интервалах (0 – 0,4) РЕЗ  и (1,6 – 2) РЕЗ  по 3 замера.
  2.  Провести аналогичные измерения при других значения сопротивления R = 100 Ом и 200 Ом. Результаты измерений занести в табл. 1.
  3.  По полученным экспериментальным данным построить резонансные кривые  U = f() для трех значений сопротивления  R. Пользуясь полученными графиками, определить резонансную частоту  РЕЗ и сравнить ее с полученной теоретически.

Упражнение 2. Построение фазочастотной характеристики.

1. Соберите схему, изображенную на рис. 6. Колебательный контур подключите к гнезду генератора «          ». Подайте на вход «Х» осциллографа  напряжение с клемм звукового генератора (Поставьте переключатель осциллографа из положения  «      » в положение «Х»).

2 – 5. Аналогичны соответствующим пунктам задания 1.

6. Регулируя усиление осциллографа по оси «Y» и входное напряжение звукового генератора с помощью ручки «          », получите одинаковую величину сигнала по оси  «Х»  и  «Y». На экране появятся фигуры Лиссажу в виде эллипса (рис. 5).

7. Подбирая частоту генератора вращением ручки «Частота  Hz», добейтесь резонанса. При резонансе сдвиг фаз   = 0 и эллипс вырождается в прямую линию. Полученное значение  РЕЗ занесите в табл. 2.

Таблица 2

, Гц

1

2

3

4

   15

R = 1 Ом

РЕЗ =   Гц

а, дел

b, дел

a/b

, град

R = 100 Ом

РЕЗ =   Гц

а, дел

b, дел

a/b

, град

R = 200 Ом

РЕЗ =   Гц

а, дел

b, дел

a/b

, град

8. Меняя частоту   по обе стороны от резонансного значения, измерьте отрезки  «а»  и  «b» в делениях  (рис. 5). Измерение проведите для 14 – 15 значений частоты звукового генератора, причем отсчет делайте с интервалом 50 Гц вблизи резонансного значения и с интервалом 100 Гц вдали от него.

9. Провести измерения по пунктам 6 – 8 при других значениях сопротивления  R = 100 Ом и 200 Ом. Результаты занести в табл. 2.

  1.  Рассчитайте по формуле (10) сдвиг фаз между током в контуре и напряжением на входе контура. Результаты занесите в табл. 2.
  2.  На основании полученных результатов постройте графики зависимости   = f () при заданных значениях сопротивления  R.

КОНТРОЛЬНЫЕ  ВОПРОСЫ

  1.  Что такое колебание? Какие колебания называются вынужденными?
  2.  Дайте понятие основных характеристик колебательного движения (амплитуда, частота, период, фаза).
  3.  Элементы электрического колебательного контура. Опишите физические процессы, происходящие в контуре. Для каких целей используется колебательный контур?
  4.  Получите дифференциальное уравнение вынужденных колебаний.
  5.  Как частота питающего напряжения влияет на величину активного, емкостного и индуктивного сопротивлений, а также импеданса колебательного контура
  6.  Нарисуйте фазочастотную характеристику колебательного контура и объясните, какой смысл имеет знак сдвига фаз? Можно ли, зная Cos , сделать вывод о том, что наблюдается в цепи резонанс или нет?

58

  1.  

 

А также другие работы, которые могут Вас заинтересовать

45504. Графические средства представления проектных решений АСОИУ (IDEF, DFD, UML, ERD и т.п.) 36 KB
  DFD диаграммы потоков данных являются основным средством моделирования функциональных требований к проектируемой системе. Первый шаг моделирования извлечение информации из интервью и выделение сущностей. Второй шаг моделирования идентификация связей. Язык UML находится в процессе стандартизации проводимом OMG организацией по стандартизации в области ОО методов и технологий в настоящее время принят в качестве стандартного языка моделирования и получил широкую поддержку в индустрии ПО.
45505. Анализ и оценка производительности АСОИУ 23 KB
  В основе такой оценки лежит понятие производительности. Есть 2 показателя производительности процессов по чистому времени: показатель производительности процессоров на операциях с данными целочисленного типа MIPS отношение числа команд в программе к времени ее выполнения показатель производительности процессоров на операциях с данными вещественного типа при все кажущейся простоте критерия оценки чем MIPS тем быстрее выполняется программа его использование затруднено вследствие нескольких причин: процессоры разной архитектуры...
45506. Общая характеристика процесса проектирования АСОИУ. Цели и этапы разработки консалтинговых проектов 41 KB
  Проект проектноконструкторская и технологическая документация в которой представлено описание проектных решений по созданию и эксплуатации системы в конкретной программнотехнической среде. Проектирование системы процесс преобразования входной информации об объекте проектирования о методах проектирования и об опыте проектирования объектов аналогичного назначения в соответствии с ГОСТом в проект АСОИУ. Проектирование АСОИУ сводится к последовательной формализации проектных решений на различных стадиях жизненного цикла системы....
45507. Структурный подход к проектированию ИС. Функциональная модель АСОИУ 72.5 KB
  Сущность структурного подхода к разработке ИС заключается в ее декомпозиции на автоматизированные функции. Основные элементы этой методологии основываются на следующих концепциях: графическое представление блочного моделирования функции изображаются в виде блока интерфейсы дуг входящих и выходящих взаимодействие блоков с помощью интерфейсных дуг. Блок детализируется на другой диаграмме с помощью нескольких блоков эти блоки представляют подфункции исходной функции. Обратные связи итерации продолжающие процессы и перекрывающая во...
45508. Разработка модели защиты данных в АСОИУ 29.5 KB
  Разработка модели защиты данных в АСОИУ Большое внимание в настоящее время уделяется вопросам формирования принципов построения механизмов защиты информации ЗИ и системы требований к ним. На основе имеющегося опыта можно сформулировать следующие фундаментальные принципы организации защиты информации: системность; специализированность; неформальность. Основные требования принципа системности сводятся к тому что для обеспечения надежной защиты информации в современных АСОИУ должна быть обеспечена надежная и согласованная защита во всех...
45509. Разработка пользовательского интерфейса 44 KB
  Интерфейс пользователя эта та часть программы которая находится у всех на виду. Процесс разработки ПИ разбивается на этапы ЖЦ: Анализ трудовой деятельности пользователя объединение бизнесфункций в роли. Формулировка требований к работе пользователя и выбор показателей оценки пользовательского интерфейса. Разработка обобщенного сценария взаимодействия пользователя с программным модулем функциональной модели и его предварительная оценка пользователями и Заказчиком.
45510. Разработка программы для исследования веб-камер для стрелкового тренажера 3.1 MB
  В процессе работы была разработана программа для исследования веб-камер и микрофонов в качестве регистратора точки прицеливания и спускового крючка для стрелкового тренажера на общедоступных компонентах.
45511. УПРАВЛЕНИЕ ПРОЕКТОМ АСОИУ 35.5 KB
  Таким образом система управления проектами является одним из важнейших компонентов всей системы управления организацией. Основные преимущества использования системы управления проектами включают: централизованное хранение информации по графику работ ресурсам и стоимости; возможности быстрого анализа влияния изменений в графике ресурсном обеспечении и финансировании на план проекта; возможность распределенной поддержки и обновления данных в сетевом режиме; возможности автоматизированной генерации отчетов и графических диаграмм...
45512. Проектная документация АСОИУ 54.5 KB
  Пояснительные записки к эскизному техническому проектам содержат разделы: общие положения; описание процесса деятельности; основные технические решения; мероприятия по подготовке объекта автоматизации к вводу системы в действие. Описание автоматизируемых функций содержит разделы: исходные данные; цели АС и автоматизированные функции; характеристика функциональной структуры; типовые решения при наличии. Описание постановки задачи комплекса задач содержит разделы: характеристики комплекса задач; выходная информация; входная информация....