42166

ВЫБОР РЕГРЕССИОННОЙ МОДЕЛИ

Лабораторная работа

Физика

Ранее предполагалось что мы имеем дело с правильной спецификацией модели то есть считалось что зависимая переменная y регрессоры X и оцениваемые параметры β связаны соотношением y = Xβ ε и выполняются условия ГауссаМаркова. Рассматривается два основных случая: В оцениваемой модели отсутствует часть независимых переменных имеющихся в истинной модели исключение существенных переменных: истинная модель: y = Xβ Zγ ε длинная регрессия; оцениваемая модель: y = Xβ ε короткая регрессия. В оцениваемой модели присутствуют...

Русский

2013-10-27

242.5 KB

47 чел.

Лабораторная работа №6

ВЫБОР РЕГРЕССИОННОЙ МОДЕЛИ

Сам выбор регрессоров и вида модели называется спецификацией модели. Ранее предполагалось, что мы имеем дело с правильной спецификацией модели, то есть считалось, что зависимая переменная y, регрессоры X и оцениваемые параметры β связаны соотношением

y = + ε

и выполняются условия Гаусса-Маркова.

При этом часто утверждается, что данное соотношение описывает «процесс, порождающий данные» или что он является «истинной моделью». Как правило, на практике истинная модель неизвестна, исследователь оценивает модель, которая лишь приближенно соответствует процессу, порождающему данные. Поэтому возникает естественный вопрос о соотношении между МНК-оценками параметров в истинной и выбранной моделях.

Рассматривается два основных случая:

  1.  В оцениваемой модели отсутствует часть независимых переменных, имеющихся в истинной модели (исключение существенных переменных):

истинная модель:  y = + + ε (длинная регрессия);

оцениваемая модель:  y = + ε  (короткая регрессия).

Здесь Xn×k – матрица; Zn×l – матрица; yn×1 – вектор наблюдений зависимой переменной; βk×1, γl×1 – векторы коэффициентов.

В этом случае оценка, полученная в короткой регрессии, в общем случае смещенная, но обладает меньшей вариацией.

  1.  В оцениваемой модели присутствуют независимые переменные, которых нет в истинной модели (включение несущественных переменных):

истинная модель:   y = + ε  (короткая регрессия);

оцениваемая модель:  y = + + ε (длинная регрессия).

В этом случае оценка  несмещенная, но дисперсия оценки увеличивается от включения в модель несущественных переменных.

Основным критерием выбора вида модели является ее экономический смысл, а не подгонка данных под модель.

1. Корректировка вида модели

«Улучшить» вид построенной множественной линейной регрессии можно используя следующие тесты.

Тест Вальда

Проводится для проверки гипотез равенства коэффициентов какому-либо значению или соотношения коэффициентов между собой. Например, β2=0 или β3=2·β4.

Тест на функциональную форму

Тестом на ошибку линейной спецификации модели является RESET-тест. Идея этого теста заключается в том, что если модель  верна, то добавление нелинейных функций  не должно помогать объяснять yt. В частности, можно добавлять степени:

               (1)

Тестируется гипотеза Н0: α2 = … = αm с помощью F-статистки. Обычно тест применяется при небольших значениях m = 2,3,4. Однако он может отвергать нулевую гипотезу не потому, что в истинной модели есть нелинейные члены, а в силу того, что в уравнении пропущена переменная, влияние которой частично учтено нелинейными членами в (1).

Часто включение в модель квадрата переменной x обусловлено тем, что влияние x на y в какой-то момент достигает максимума или минимума и форма взаимосвязи меняется. Например, рост заработной платы в зависимости от возраста замедляется ближе к пенсионному возрасту, а с какого-то момента (возраста) начинает снижаться. Поэтому вводится дополнительная переменная x2 (возраст в квадрате).

 

2. Выбор конкурирующих моделей

Если в процессе моделирования было получено две значимых модели, качественно описывающих исследуемый процесс, то проводятся различные тесты на выбор лучшей модели.

F-тест

Пусть имеется две модели:

модель А: ,

модель В: .

Обе модели содержат как одинаковые, так и различные правые части:

.

Согласно этому рассматриваются две регрессии:

,

.

Далее проверяются две гипотезы:

H0: δA = 0 – если не отвергается, то и не отвергается модель В.

H0: δB = 0 – если не отвергается, то и не отвергается модель А.

Если обе гипотезы либо принимаются, либо отвергаются, то ситуация остается неопределенной.

J-тест

Рассматривается частный случай моделей А и В:

.  (2)

При δ = 0 эта модель совпадает с моделью А, а при δ = 1 – с моделью В. Однако это уравнение невозможно оценить, поскольку параметры β, γ, δ не могут быть идентифицированы одновременно. Поэтому сначала оценивается параметр γ, а затем оценка  подставляется в уравнение (2):

.  (3)

Здесь  – прогнозные значения, полученные по модели В, а . Из уравнения (3) можно получить оценку . Если нулевая гипотеза Н0: δ=0 не отвергается, то склоняемся к выбору модели А. Аналогичную процедуру можно проделать, взяв за нулевую гипотезу модель В. В двух из четырех возможных исходов теста, когда обе модели отвергаются или обе модели не отвергаются, ситуация остается неопределенной.

РЕ-тест

Применяется, когда в левой части сравниваемых уравнений – различные формы зависимой переменной, например, линейная и полулогарифмическая:

,

.

Коэффициент детерминации R2 здесь не может применяться для сравнения и выбора лучшей модели.

Содержательный смысл PE-теста заключается в следующем: улучшится ли модель при включении в нее прогноза конкурирующей модели.

Реализация РЕ-теста состоит в следующем: оцениваются обе модели МНК и получаются соответствующие прогнозные значения  и . Далее оцениваются следующие модели:

,

.

Затем тестируются гипотезы:

H0: δLIN = 0 – если не отвергается, то и не отвергается линейная модель.

H0: δLOG = 0 – если не отвергается, то и не отвергается полулогарифмическая модель. Как и ранее, возможны четыре исхода теста.

РЕ-тест может применяться в значительно более общей ситуации.

Выбор регрессионной модели в EViews 5.1.

1. Тест Вальда

Для проведения теста Вальда в EViews необходимо в окне “Equation” выбрать View / Coefficient Tests / WaldCoefficient Restrictions и в появившемся окне “Wald Test” ввести проверяемую гипотезу (рис. 6.1) и нажать ОК.

Рис. 6.1. Тест Вальда

На рис. 6 параметр С(4) соответствует 4-му по порядку коэффициенту в окне “Equation”, а параметр С(5) соответственно – 5-му коэффициенту. Проверятся гипотеза о равном влиянии переменных при коэффициентах С(4) и С(5) на результирующую переменную.

В результате теста в окне “Equation”появится следующая информация (рис. 6.2).

Рис. 6.2. Результаты теста Вальда

Если полученное значение Probability < 0.05 (см. рис. 6.2), то гипотеза отвергается. В данном примере влияние переменных при коэффициентах С(4) и С(5) на результирующую переменную неравное.

2. Тест на функциональную форму (RESET-тест):

В окне “Equation” для выбранной модели выбирается View / Stability Tests / Ramsey RESET Test…, в появившемся окне “RESET Specification” в поле “Number of fitted” вводится значение m–1 (степень нелинейного члена минус 1), например, 2. В результате в окне “Equation” появятся результаты теста (рис. 6.3).

Рис. 6.3. Результаты проведения RESET-теста для m-1=2

Если значение Рrob. F < 0.05 (рис. 6.3), то это указывает на ошибочную спецификацию модели и в уравнение необходимо добавить нелинейные члены (например, X12) или другие переменные.

Для изменения спецификации модели используется кнопка Estimate в окне “Equation”.

3. РЕ-тест

Пусть имеется две значимых модели

где ly, lx1, lx2 – логарифмы соответственно рядов y, x1 и x2.

Для проведения РЕ-теста выполняются следующие шаги.

  1.  Строятся прогнозные значения для y и ly.

Для линейной модели (y) в окне “Equation” нажмите кнопку Forecast и в появившемся окне в поле “Forecast name” введите имя прогноза, например, yf. Нажмите ОК. В результате в рабочем файле появится прогнозный ряд yf, а в окне “Equation” – графики y и yf с оценками прогнозного качества модели.

Для логарифмической модели (ly) процедура построения прогнозных значений  (lyf) проводится аналогично.

  1.  Оцениваются модели

То есть в строке ввода формул последовательно вводятся

ls y c x1 x2 log(yf)-lyf,

ls ly c lx1 lx2 yf-exp(lyf).

  1.  Оценивается значимость коэффициентов при добавленных регрессорах в обеих моделях (рис. 6.4).

 

Рис. 6.4. Результаты PE-теста

Если оба коэффициента значимы (рис. 6.4) или оба незначимы, то ситуация неопределенная и выбирать модель необходимо другими методами.

Если в одной модели коэффициент при добавленном регрессоре значим, а в другой – незначим, то лучшей считается модель с незначимым коэффициентом.

Задания:

Исследуется зависимость зарплаты в Нидерландах от образования, пола и возраста. Исходные данные содержат информацию о 75 мужчинах и 75 женщинах, работавших на полную ставку (не менее 4 дней в неделю в 1997 г.). Данные получены на основании опроса. В исследование включены следующие переменные:

W – зарплата гульденов/час до вычета налогов,

AGE – возраст, лет,

ЕDUi, i=1..5 – уровень образования:

ЕDU1=1 – начальная школа или менее,

ЕDU2=1 – низшее ремесленное,

ЕDU3=1 – среднее,

ЕDU4=1 – высшее ремесленное,

ЕDU5=1 – университет.

Исходные данные находятся в файле lab 6.WF1.

  1.  Проведите анализ данных и подготовьте выборку к проведению эконометрического моделирования.
  2.  Постройте линейную и экспонециальную модели зависимости зарплаты от возраста, пола и уровня образования. Оцените их качество.
  3.  Используя тест Вальда, проверьте гипотезы о равном влиянии на зарплату некоторых уровней образования. При необходимости объедините переменные.
  4.  Используя RESET-тест, проверьте на функциональную форму модели. При необходимости добавьте нелинейные члены.
  5.  Проведите РЕ-тест для выбора наилучшей модели.
  6.  Проверьте ошибки регрессии наилучшей модели на гетероскедастичность и при необходимости скорректируйте их.
  7.  Интерпретируйте полученные результаты оценки регрессии.
  8.  Сохраните рабочий файл под именем «фамилия студента»_6.WF1.


СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

  1.  Айвазян С.А. Прикладная статистика. Основы эконометрики. – М.: ЮНИТИ, 2005.
  2.  Афанасьев В.Н., Юзбашев М.М., Гуляева Т.И. Эконометрика.- М.: Финансы и статистика, 2006.
  3.  Бигильдеева Т.Б., Постников Е.А. Эконометрика. – Челябинск: Челяб. гос. ун-т, 2007 г. – 109 с.
  4.  Елисеева И.И. Практикум по эконометрике. – М.: Финансы и статистика, 2005.
  5.  Кремер Н.Ш., Путко Б.А. Эконометрика: Учебник для вузов. - М.: ЮНИТИ-ДАНА, 2002.
  6.  Магнус Я.Р., Катышев П.К., Пересецкий А.А. Эконометрика. Начальный курс: Учеб. – 6-е изд., перераб. и доп. – М.: Дело, 2004.
  7.  Мхитарян М.С., Архипова М.Ю. Эконометрика. – М.: Московский государственный университет экономики, статистики и информатики, 2004.
  8.  Эконометрика: Учебник (под ред. И.И.Елисеевой). - М.: Финансы и статистика, 2005.


 

А также другие работы, которые могут Вас заинтересовать

3786. Жизнь и творчество Карла Брюллова 307.2 KB
  Введение В развитии искусства, в характере и особенностях отдельных его направлений большая роль принадлежит творческим личностям художников, которых история называла великими или замечательными. Этот художники своей деятельностью участвуют в формир...
3787. Илья Репин 53 KB
  Репин родился в 1884 году в маленьком украинском городке Чугуеве, недалеко от Харькова, в семье военного поселянина. С родными местами связаны первые жизненные и художественные впечатления Репина, здесь же он получил и первые профессиональные навыки...
3788. Жизнь и творчество художника А.П. Лежнева 41.5 KB
  Вступление Изобразительное искусство в Башкортостане, как и другие виды искусства, имеет свои истоки. Это – народная традиция, которая нашла отражение в орнаментах, украшениях, узорах, формах предметов бытового назначения. Их цвета созвучны бог...
3789. Жизнь и творчество И.В. Шишкина 103 KB
  Шишкин родился 13 (25) января 1832 года в Елабуге - маленьком городке, расположенном на высоком берегу Камы. Впечатлительный, любознательный, одаренный мальчик нашел незаменимого друга в своем отце. Небогатый купец, И. В. Шишкин был человеком разнос...
3790. Суйменкул Чокморов. Жизнь и творческий путь Суйменкула Чокморова 46.5 KB
  В конце шестидесятых годов кыргызское киноискусство достигло всемирной известности: тогда мировая печать заговорила о чуде кыргызского кино. Именно в эти годы начал свою кинодеятельность Суйменкул Чокморов. Если Ч. Айтматов, Б. Шамшиев, ...
3791. Животный мир как объект охраны и использования 70.5 KB
  Животный мир является составной частью природной среды и выступает как неотъемлемое звено в цепи экологических систем, необходимый компонент в процессе круговорота веществ и энергии природы, активно виляющий на функционирование естественных...
3792. Изучение закона вращательного движения при помощи маятника Обербека 39.5 KB
  Изучение закона вращательного движения при помощи маятника Обербека Цель работы: нахождение с методом определения момента инерции тела, основанном на использовании закона вращательного движения, и определение момента инерции специального тела- маятн...