42205

КАНОНИЧЕСКИЕ ФОРМЫ ПРЕДСТАВЛЕНИЯ ДИНАМИЧЕСКИХ СИСТЕМ

Лабораторная работа

Физика

Математическая модель одной и той же линейной динамической системы может быть представлена в различных формах: в форме скалярного дифференциального уравнения -го порядка (модель вход-выход) или в форме системы из дифференциальных уравнений 1-го порядка (модель вход-состояние-выход). Следовательно, между различными формами представления математических моделей существует определенная взаимосвязь, т.е. модель вход-состояние-выход может быть преобразована к модели вход-выход и наоборот.

Русский

2013-10-27

181.26 KB

92 чел.

ЛАБОРАТОРНАЯ РАБОТА № 2

КАНОНИЧЕСКИЕ ФОРМЫ ПРЕДСТАВЛЕНИЯ

ДИНАМИЧЕСКИХ СИСТЕМ

Цель работы. Ознакомление с методами взаимного перехода между моделями вход-выход и вход-состояние-выход, а также с каноническими формами представления моделей вход-состояние-выход.

Методические рекомендации. До начала работы студенты должны получить от преподавателя вариант задания. К занятию допускаются студенты, получившие аналитические выражения для математических моделей в соответствии с пунктами 1.1, 2.1 и 3.1 порядка выполнения работы. Лабораторная работа рассчитана на 2 часа.

Теоретические сведения. Математическая модель одной и той же линейной динамической системы может быть представлена в различных формах: в форме скалярного дифференциального уравнения -го порядка (модель вход-выход) или в форме системы из дифференциальных уравнений 1-го порядка (модель вход-состояние-выход). Следовательно, между различными формами представления математических моделей существует определенная взаимосвязь, т.е. модель вход-состояние-выход может быть преобразована к модели вход-выход и наоборот. При этом модели будут эквивалентными в том смысле, что они определяют одно и то же преобразование входного сигнала в выходной .

Модель вход-выход динамической системы описывается уравнением (подробнее — см.  лабораторную работу № 1)

, (2.1)

где y и u — выходная и входная переменные, соответственно. При , модель вход-состояние-выход имеет вид

       (2.2)

Причем координаты вектора состояния x и коэффициенты матриц A, B и C зависят от выбора базиса в пространстве состояний. Преобразование вектора состояния, связанное с заменой базиса, задается выражениями

,       (2.3)

где —вектор состояния в "новом" базисе, М — неособая матрица преобразования координат. Преобразование (2.3) обеспечивает переход от модели (2.2) к подобной модели

       (2.4)

Матрицы подобных моделей связаны соотношениями:

.

Если известно, что модели (2.2) и (2.4) являются различными формами описания одной и тойже динамической системы, то матрица преобразования координат может быть найдена из выражения

,

где матрица управляемости модели (2.2), —матрица управляемости модели (2.4).

Переход от модели вход-состояние-выход (2.2) к модели вход-выход (2.1) является однозначным и определяется соотношением

,

где
— передаточная функция системы. Очевидно, что по известной передаточной функции может быть легко записано дифференциальное уравнение (2.1).

Переход от модели вход-выход (2.1) к модели вход-состояние-выход (2.2) является неоднозначным, что связано с возможностью достаточно произвольного назначения вектора состояния. На практике наиболее часто используются следующие две, так называемые, канонические формы представления моделей вход-состояние-выход: каноническая наблюдаемая форма и каноническая управляемая форма. Удобство канонических форм состоит в возможности непосредственного определения параметров матриц А, B и C  на основе коэффициентов и дифференциального уравнения (2.1) без каких-либо дополнительных вычислений. Кроме того, использование канонических форм позволяет упростить решение целого ряда прикладных задач анализа и синтеза систем управления.

Переход от модели вход-выход к модели вход-состояние-выход удобнее всего совершать через схему моделирования. При этом в качестве переменных состояния выбираются выходы интеграторов, а уравнения состояния записываются в соответствии со структурой схемы моделирования.

Метод построения схемы моделирования в канонической наблюдаемой форме соответствует методу, рассмотренному в лабораторной работе № 1. При этом, в случае дифференциального уравнения -го порядка, схема моделирования принимает вид, приведенный на рис.2.1. Нумеруя координаты вектора состояния в указанной на рисунке последовательности, легко получить следующие выражения для матриц системы вход-состояние-выход

.

Рис.2.1. Схема моделирования в канонической наблюдаемой форме

При этом требуемые начальные условия координат вектора состояния могут быть определены из системы алгебраических уравнений

.    (2.5)

В системе (2.5) слагаемые с начальными значениями входного сигнала и его производных отсутствуют, так как для начальных условий слева имеем (см. лабораторную работу №1).

Для построения схемы моделирования в канонической управляемой форме, введем вспомогательную переменную , являющуюся решением дифференциального уравнения

.

Следовательно

.      (2.6)

Уравнение (2.6) позволяет определить структуру обратных связей схемы моделирования (см. рис.2.2). Для формирования прямых связей заметим, что в силу свойств линейных систем

.

Нумеруя координаты вектора состояния в указанной на рисунке последовательности, можно получить следующие выражения для матриц системы вход-состояние-выход

Рис.2.2. Схема моделирования в канонической управляемой форме

.

Требуемые начальные условия координат вектора состояния рассчитываются из системы алгебраических уравнений (2.5).

Порядок выполнения работы.

  1.   Переход от модели вход-выход к модели вход-состояние-выход.

1.1. В соответствии с вариантом задания (см. табл.1.1), построить математические модели вход-состояние-выход в канонической управляемой и канонической наблюдаемой формах. Определить передаточную функцию системы.

1.2. Используя блоки "Transfer Fcn" и "State-Space" пакета SIMULINK, осуществить моделирование моделей вход-выход, вход-состояние-выход в канонической управляемой форме и вход-состояние-выход в канонической наблюдаемой форме при ступенчатом единичном входном воздействии и нулевых начальных условиях. Схема моделирования иллюстрируется рис.2.3, где блок с именем "Transfer Fcn" задает модель вход-выход в форме передаточной функции, блок "State-Space"— модель вход-состояние-выход в канонической управляемой форме, а блок "State-Space1"— модель вход-состояние-выход в канонической наблюдаемой форме.

  1.   Переход от модели вход-состояние-выход к модели вход-выход.

2.1. В соответствии с вариантом задания (см. табл.2.1), осуществить расчет передаточной функции системы, а также канонических моделей вход-состояние-выход.

2.2. Используя блоки "Transfer Fcn" и "State-Space" пакета SIMULINK, осуществить моделирование исходной модели и полученных моделей вход-выход, вход-состояние-выход в канонической управляемой форме и вход-состояние-выход в канонической наблюдаемой форме, при ступенчатом единичном входном воздействии и нулевых начальных условиях.

2.3. Рассчитать матрицы преобразования исходной модели к каноническим формам.

  1.   Замена базиса в пространстве состояний.

3.1. В соответствии с вариантом матрицы преобразования координат (см. табл.2.2), построить модель, подобную модели из п.2.1.

  1.  Используя блоки "State-Space", осуществить моделирование исходной и преобразованной систем при ступенчатом единичном входном воздействии и нулевых начальных условиях. На экран вывести выходные переменные двух систем.

Рис. 2.3 Схема эксперимента

Содержание отчета.

1. Аналитический вывод математических моделей канонических форм, подобных систем и матриц преобразования координат.

  1.  Результаты моделирования.
  2.  Выводы.

Вопросы к защите лабораторной работы.

1. В каком смысле понимается эквивалентность подобных математических моделей вход-состояние-выход?

2. Выведете в общем виде матрицу преобразования координат для перехода от канонической управляемой формы к канонической наблюдаемой форме модели второго порядка.

3. Чем вызвана неоднозначность перехода от модели вход-выход к модели вход-состояние-выход?

4. Используя схему моделирования, приведенную на рис.2.2, составьте модель вход-состояние-выход, отличную от канонической управляемой формы.

Таблица 2.1

Варианты значений матриц A, B и C   

Номер варианта

n

А

B

CT

Номер варианта

n

A

B

CT    

1

2

7

2

2

2

8

2

3

2

9

2

4

2

10

2

5

2

11

2

6

2

12

2

Таблица 2.2

Варианты элементов матрицы преобразования координат  

Вариант

1

2

3

4

5

6

7

8

9

10

11

12

2

1

0,5

2

4

5

2

2

2,5

-1

1

5

1

5

0

0

0

0

3

8

2

0

2

0

0

0

6

5

-2

6

0

0

0

0

0

5

4

2

2

0,5

0,5

2

5

2

4

-1

2

1