42207

ТИПОВЫЕ ДИНАМИЧЕСКИЕ ЗВЕНЬЯ

Лабораторная работа

Физика

Интегрирующее звено интегратор описывается дифференциальным уравнением: или где коэффициент усиления а его переходная функция . Интегрирующее звено с замедлением описывается дифференциальным уравнением: или где постоянная времени а его переходная функция . Изодромное звено описывается дифференциальным уравнением: или а его переходная функция . Реальное дифференцирующее звено описывается дифференциальным уравнением или а его переходная функция .

Русский

2013-10-27

512 KB

24 чел.

ЛАБОРАТОРНАЯ РАБОТА № 4

ТИПОВЫЕ ДИНАМИЧЕСКИЕ ЗВЕНЬЯ

Цель работы. Исследование переходных характеристик элементарных звеньев.

Методические рекомендации. До начала работы студенты должны получить от преподавателя вариант задания и файл с математическими моделями элементарных звеньев. Лабораторная работа рассчитана на 2 часа.

Теоретические сведения. Типовыми динамическими звеньями называются простейшие составные части системы, поведение которых описывается обыкновенными дифференциальными уравнениями 0-2-го порядка:

     (4.1)

где  - входная переменная звена ,  -выходная переменная; -постоянные коэффициенты (параметры). С использованием оператора дифференцирования s=d/dt уравнение (4.1) запишется в виде

 

или

где W(s)-передаточная функция звена (4.1).

Переходным процессом называется изменение во времени переменных (сигналов) динамической системы или звена: , , обусловленное начальными условиями или входным воздействием.

Переходной функцией системы или звена y=h(t) называется переходный процесс выходной переменной при единичном входном воздействии g=1(t) и нулевых начальных условиях. По графику переходной функции может быть определена математическая модель исследуемого динамического звена и ее параметры.

 Интегрирующее звено (интегратор) описывается дифференциальным уравнением:

или ,

где - коэффициент усиления, а его переходная функция .

 Интегрирующее звено с замедлением описывается дифференциальным уравнением:

 или

где - постоянная времени, а его переходная функция

.

Изодромное звено описывается дифференциальным уравнением:

 или ,

а его переходная функция -

 .

 Реальное дифференцирующее звено описывается дифференциальным уравнением

 или

а его переходная функция -

.

 Апериодическое звено 1-го порядка описывается дифференциальным уравнением:

или ,

а его переходная функция -  .

 Апериодическое звено 2-го порядка описывается дифференциальным уравнением:

или ,

где  - постоянные времени, причем . При этом корни характеристического уравнения  будут вещественными и отрицательными.

Знаменатель передаточной функции апериодического звена 2-го порядка разлагается на множители:

,

где  ,

Апериодическое звено второго порядка эквивалентно двум звеньям первого порядка, включенным последовательно друг за другом, с общим коэффициентом усиления  и постоянными времени . Его переходная функция имеет вид

.

 Колебательное звено описывается тем же дифференциальным уравнением, что и апериодическое звено второго порядка. Однако корни характеристического уравнения  должны быть комплексными, что будет выполняться при .

Передаточная функция колебательного звена обычно представляется в виде

,

где - период свободных колебаний при отсутствии затухания,  - параметр затухания, лежащий в пределах . Переходную функцию данного звена можно представить в виде

,

где , . Параметр  легко определяется по графику переходной функции, а параметр  находится посредством выражения

.

 Консервативное звено является частным случаем колебательного звена при . Тогда корни характеристического уравнения  будут чисто мнимые. Передаточная функция колебательного звена имеет вид

,

а его переходная функция -  ,

где .

 Порядок выполнения работы

Открыть файл lab_N.m, где N - номер варианта, содержащий шесть блоков. Каждый блок описывает некоторое элементарное звено. Снять переходные характеристики каждого из них. По переходным характеристикам определить тип звена, его передаточную функцию и параметры. Подтвердить полученные результаты вычислительными экспериментами.

 

Содержание отчета

Переходные характеристики исследуемых элементарных звеньев, их передаточные функции и параметры

Выводы

Вопросы к защите лабораторной работы

Перечислите способы, с помощью которых может быть задана динамическая система.

Назовите типовое динамической звено, если корни знаменателя его передаточной функции чисто мнимые, а числитель передаточной функции равен постоянной.

Назовите типовое динамической звено и параметры, если его переходная функция - .

Динамической звено описывается дифференциальным уравнением . При каких значения параметра  оно называется колебательным звеном?

Найдите переходную функцию динамической звена заданного дифференциальным уравнением


Данной работой Вы можете всегда поделиться с другими людьми, они вам буду только благодарны!!!
Кнопки "поделиться работой":

 

А также другие работы, которые могут Вас заинтересовать

20506. Мова запитів SQL. Огляд її можливостей 27 KB
  Він по суті містив тільки пропозиція SELECT яке дозволяло формулювати запити для вибірки даних з бази. Потім мова була доповнено двома іншими компонентами необхідними для роботи з базами даних. Перший з них – компонент для визначення структури бази даних які в термінології теорії баз даних називаються мовою визначення даних МВД. Другий засоби що дозволяють заповнювати базу даних змінювати їх і видаляти.
20507. Моделі подання знань.Вимоги до моделей подання знань 26.5 KB
  Моделі подання знань.Вимоги до моделей подання знань Подання знань це множина синтаксичних і семантичних угод що роблять можливим формальне вираження знань про предметну галузь у комп’ютерноінтерпретованій формі. Найрозповсюдженішими є такі моделі представлення знань: логічні моделі продукційні моделі фреймові моделі семантичні мережі. До основних вимог подання знань належать: Лаконічність зміст друкованих знаків.
20508. Неорієнтовані та орієнтовані графи 27 KB
  Граф це сукупність об'єктів із зв'язками між ними. Об'єкти розглядаються як вершини або вузли графу а зв'язки як дуги або ребра. Для різних областей використання види графів можуть відрізнятися орієнтовністю обмеженнями на кількість зв'язків і додатковими даними про вершини або ребра.
20509. Нотація Баркера 38 KB
  Связи обозначаются линиями с именами место соединения связи и сущности определяет кардинальность связи: Обозначение Кардинальность 01 11 0N 1N Пример: Для обозначения отношения категоризации вводится элемент дуга :.
20510. Орієнтовані і бінарні дерева 50.5 KB
  Бінарне дерево. В програмуванні бінарне дерево – дерево структура даних в якому кожна вершина має не більше двох дітей. Різновиди бінарних дерев Бінарне дерево – таке кореневе дерево в якому кожна вершина має не більше двох дітей. Повне закінчене бінарне дерево – таке бінарне дерево в якому кожна вершина має нуль або двох дітей.
20511. Пошук даних за допомогою мови SQL 25 KB
  Пошук даних за допомогою мови SQL Пошук здійснюється командою SELECTSELECT FROM table_name WHERE выражение [order by field_name [desc][asc]] Ця команда шукає всі записи в таблиці table_name які задовольняють висловом вираз.
20512. Реляційна алгебра 19.16 KB
  нові імена атрибутів[Правити] Об'єднанняВідношення з тим же заголовком що і у сумісних за типом відносин A і B і тілом що складається з кортежів які належать або A або B або обом відносинам.Синтаксис:A UNION B[Правити] ПеретинВідношення з тим же заголовком що й у відносин A і B і тілом що складається з кортежів які належать одночасно обом відносин A і B.Синтаксис:A INTERSECT B[Правити] ВідніманняВідношення з тим же заголовком що і у сумісних за типом відносин A і B і тілом що складається з кортежів що належать відношенню A і не...
20513. Розбивання квадратних матриць на клітки другим способом 66.5 KB
  Матриці мають довготривалу історію застосування при розв'язуванні систем лінійних рівнянь. Поняття матриці яке вже не було похідним від поняття визначник з'явилось тільки в 1858 році в праці англійського математика Артура Келі. Термін матриця першим став вживатиДжеймс Джозеф Сильвестр який розглядав матрицю як об’єкт що породжує сімейство мінорів визначників менших матриць утворених викреслюванням рядків та стовпців з початкової матриці. LU розклад матриці представлення матриці у вигляді добутку нижньої трикутної матриці та...
20514. Розбивання квадратних матриць на клітки першим способом 41.5 KB
  Одним з найважливіших завдань є завдання знаходження вирішення систем лінійних рівнянь алгебри. коефіцієнтів Х шукане рішення записане у вигляді стовпця з n елементів F стовпець вільних членів з mелементів. Якщо A прямокутна m ´ n матріца рангу до те рішення може не існувати або бути не єдиним. В разі неіснування рішення має сенс узагальнене рішення що дає мінімум сумі квадратів нев'язок див.