42209

АНАЛИЗ ВЛИЯНИЯ НУЛЕЙ И ПОЛЮСОВ ПЕРЕДАТОЧНОЙ ФУНКЦИИ НА ДИНАМИЧЕСКИЕ СВОЙСТВА

Лабораторная работа

Физика

Изучить связь характера переходной характеристики динамических свойств системы с размещением на комплексной плоскости нулей и полюсов. Корни характеристического полинома системы полюса системы 6.2 где комплексная переменная определяют характер переходной функции системы с установившимся значением а следовательно и такие динамические показатели как время переходного процесса и перерегулирование . Полиномы Баттерворта для различного порядка системы n полином Баттерворта 1 2 3 4 5 6 6.

Русский

2013-10-27

1.64 MB

49 чел.

ЛАБОРАТОРНАЯ РАБОТА № 6

АНАЛИЗ ВЛИЯНИЯ НУЛЕЙ И ПОЛЮСОВ

ПЕРЕДАТОЧНОЙ ФУНКЦИИ НА ДИНАМИЧЕСКИЕ СВОЙСТВА

Цель работы. Изучить связь характера переходной характеристики, динамических свойств системы с размещением на комплексной плоскости нулей и полюсов.

Методические рекомендации. До начала работы  студенты должны получить от преподавателя вариант задания. К занятию допускаются студенты, выполнившие требуемые расчеты и составившие схемы моделирования исследуемых систем. Лабораторная работа рассчитана на 2 часа.

Теоретические сведения. Рассмотрим динамическую систему, которая описывается дифференциальным уравнением n-го порядка

,      (6.1)

где  - выходная переменная ,  - входная переменная,  - постоянные параметры. Здесь  - k-ая производная функции  по времени .   Корни  () характеристического полинома системы (полюса системы)

,       (6.2)

где - комплексная переменная, определяют характер переходной функции  системы с установившимся значением , а следовательно, и такие динамические показатели, как время переходного процесса  и перерегулирование .

Используя понятие среднегеометрического корня 

характеристический полином (6.2) можно представить в виде

,      (6.3)

в котором коэффициенты  определяются выражением

.

Среднегеометрический корень  может служить мерой быстроты протекания переходных процессов. Если в уравнении (6.3) увеличить , например, в 10 раз, то переходный процесс, оставаясь подобным самому себе, будет протекать в 10 раз быстрее. В связи с этим можно рассматривать полином (6.3) при  как некоторый нормированный характеристический полином, которому соответствует нормированная переходная функция  и нормированное время переходного процесса . Если качество переходного процесса с точки зрения перерегулирования является приемлемым, то требуемое время переходного процесса  может быть обеспечено соответствующим выбором величины .

Для обеспечения требуемого значения перерегулирования необходимо задаться определенным распределением корней характеристического полинома, например, распределением Баттерворта или биномиальным распределением Ньютона.

Распределением  Баттерворта называется такое размещение на комплексной плоскости 2n комплексных чисел , при котором они располагаются в вершинах правильного 2n-угольника (см. рис. 6.1). При этом все числа имеют знакоопределенную вещественную часть () и равные модули  . Значения таких комплексных чисел для заданного n однозначно определяется значением  и находятся из выражения

=, ,

причём n чисел  имеют строго отрицательную вещественную часть, т.е. лежат в левой полуплоскости.

Рис. 6.1. Распределение Баттерворта для различных значений порядка  

 Полиномом Баттерворта называется алгебраический полином n-го порядка , n корней которого совпадают с n комплексными числами, подчиняющимися распределению Баттерворта и имеют отрицательную вещественную часть. Полином определяется формулой

==,   (6.4)

где , а его коэффициенты находятся по формуле: . Полиномы 1-6 -го порядка приведены в табл. 6.1.

При биномиальном распределении Ньютона  комплексных чисел  принимаются равными и вещественными, т.е. . Биномиальный полином Ньютона  n-го порядка задается в общем виде выражением

Таблица 6.1.

Полиномы Баттерворта для различного порядка системы

n

полином Баттерворта

1

2

3

4

5

6

,    (6.5)

где -биномиальные коэффициенты. Полиномы 1-6-го порядков приведены в табл. 6.2.

Таблица 6.2

Биномиальные полиномы для различного порядка системы

n

Биномиальный полином

1

2

3

4

5

6

Переходные характеристики системы (6.1) порядка  с характеристическим полиномом вида (6.4), построенные в нормированном виде (,  ), приведены на рис. 6.2, а с характеристическим полиномом (6.5) на рис.6.3. Динамические системы с рассмотренными характеристическими полиномами асимптотически устойчивы, что обусловлено выбором корней характеристического полинома и обладают высокими динамическими показателями. Перерегулирование для системы (6.1) с полиномом Баттерворта ограничено:

,

а с биномиальным распределением обеспечивается получение монотонного переходного процесса ().

Метод стандартных переходных функций используется для определения коэффициентов системы (6.1) по заданным показателям . При этом требование монотонности переходного процесса однозначно определяет выбор в качестве характеристического полинома биномиального полинома (6.5), а до-

Рис 6.2 Нормированные переходные характеристики системы с

характеристическим полиномом Баттерворта

Рис 6.3 Нормированные переходные характеристики системы с

биноминальным характеристическим полиномом

пущение перерегулирования не большего 15% - выбор полинома Баттерворта (6.4). Кроме того, при распределении корней характеристического полинома по Баттерворту, в сравнении с биномиальным распределением, требуемое время переходного процесса можно обеспечить при меньших по абсолютной величине значениях коэффициентов характеристического полинома.

Коэффициенты системы  () находятся  по заданному значению времени переходного процесса  следующим образом:

по нормированным переходным функциям (рис.6.2, 6.3) определяется значение  ;

среднегеометрический корень  определяется по значениям  и , для чего используется  формула ;

коэффициенты  искомого полинома определяются выражением , где значения   находятся по таблице 6.1 или 6.2, в зависимости от выбранного типа распределения корней характеристического уравнения.

Коэффициент  определяется  по заданной величине статического коэффициента k выражением .

В некоторых случаях, возникает задача оценки быстродействия системы без построения ее переходной характеристики. Для этого может использоваться понятие степени устойчивости. Под степенью устойчивости  понимается абсолютное значение вещественной части ближайшего к мнимой оси корня. Предполагая, что переходный процесс можно считать закончившимся тогда, когда затухнет составляющая, определяемая ближайшим к мнимой оси корнем, получим приближенную зависимость между степенью устойчивости и временем переходного процесса

        (6.6)

Формула (6.6) имеет приемлемую точность, когда абсолютное значение вещественной части ближайшего к мнимой оси корня не менее чем на порядок меньше абсолютных значений вещественных частей остальных корней.

В отличии от рассмотренной выше системы вида (6.1) характер переходного процесса в системе вида

   (6.7)

определяется не только корнями характеристического полинома, т.е. полюсами системы, но и корнями полинома

,

которые называются нулями системы. При заданном полиноме  выбором коэффициентов полинома  можно, к примеру, уменьшить время переходного процесса, или обеспечить инвариантность системы к некоторым типам входных сигналов.

 Порядок выполнения работы

По заданным в табл. 6.3 значениям постоянных  определите параметры системы (6.1) с характеристическим полиномом Баттерворта и биномиальным полиномом. Для каждого случая рассчитайте корни характеристического полинома (6.2) и оцените время переходного процесса по формуле (6.6). Составьте схему моделирования системы и постройте переходные характеристики, соответствующие двум типам распределения корней характеристического уравнения.

Для каждого набора параметров , приведенных в табл. 6.4 и 6.5, постройте переходные характеристики системы (6.7) с коэффициентами  и коэффициентом b, рассчитанными в п.1 для биномиального распределения корней характеристического уравнения.  

Для набора параметров  и внешнего воздействия , приведенных в табл. 6.6, постройте реакцию системы (6.7) с нулевыми начальными условиями и коэффициентами , рассчитанными в п.1 для биномиального распределения корней характеристического уравнения. На экран монитора выводить графики .

Содержание отчета

Математическая модель динамических систем (6.1), (6.7) и соответствующие им схемы моделирования.

Коэффициенты и корни характеристического уравнения системы, рассчитанные по заданным показателям для двух типов распределения корней. Оценка времени переходного процесса.

Результаты вычислительных экспериментов (графики пяти переходных функций и график реакции системы на заданное входное воздействие).

Выводы.

Вопросы к защите лабораторной работы

Определите установившиеся значение переходной функции системы, описанной дифференциальным уравнением  

.

У системы 3-го порядка характеристический полином совпадает с полиномом Баттерворта при единичном радиусе распределения. Укажите на комплексной плоскости корни характеристического уравнения системы.

Используя нормированные переходные характеристики, укажите время переходного процесса в системе (6.1) с характеристическим биномиальным полином при  и .

Определите время переходного процесса в системе

.

Определите время переходного процесса в системе

Определите установившуюся реакцию системы  

на внешнее воздействие .

Таблица 6.3

Вариант

1

2

3

4

5

6

7

8

9

10

11

12

3

3

3

4

4

4

5

5

5

6

6

6

3

1

2.5

1.5

4

2

5

4

6

7

8

6

0.5

1.5

2

2.5

3

3.5

4

4.5

0.5

2.5

5

3.5

Таблица 6.4

Вариант

1

2

3

4

5

6

7

8

9

10

11

12

0.5

1.25

1.5

2.5

1.75

2

2.25

3

2

2.5

2.75

1.5

Таблица 6.5

Вариант

1

2

3

4

5

6

7

8

9

10

11

12

2

2

0.5

0.5

1

0.25

0.1

0.2

0.1

0.2

0.3

0.1

0.5

1.5

1

0.25

1.25

0.5

0.2

0.1

0.5

0.1

0.1

0.2

0.25

1

1

1.25

0.25

0.75

0.5

0.2

0.2

0.2

0.3

0.4

-

-

-

2

2.5

3

0.3

0.5

0.25

0.3

0.2

0.5

-

-

-

-

-

-

3.5

4

0.25

0.5

0.3

0.2

-

-

-

-

-

-

-

-

-

2

2.5

3

Таблица 6.6

Вариант

1

2

3

4

5

6

7

8

9

10

11

12

1

1

0.25

2.25

8

4.5

1

1

0.25

2.25

8

4.5

0

0

0

0

0

0

0

0

0

0

0

0

0.25

1

1

2

0.5

0.5

0.25

1

1

2

0.5

0.5


 

А также другие работы, которые могут Вас заинтересовать

15821. Основы Transact SQL: Простые выборки данных 241.5 KB
  Основы Transact SQL: Простые выборки данных SQL это аббревиатура выражения Structured Query Language язык структурированных запросов. SQL основывается на реляционной алгебре и специально разработан для взаимодействия с реляционными базами данных. SQL является прежде всего инфор...
15822. Основы Transact SQL: Простые выборки данных 199.5 KB
  Основы Transact SQL: Простые выборки данных Создание вычисляемых полей Конструкция SELECT кроме имен столбцов таблиц может также включать так называемые вычисляемые поля. В отличие от всех выбранных нами ранее столбцов вычисляемых полей на самом деле в таблицах базы дан...
15823. Основы Transact SQL: Сложные (многотабличные запросы) 173.5 KB
  Основы Transact SQL: Сложные многотабличные запросы Основы Transact SQL: Сложные многотабличные запросы В SQL сложные запросы являются комбинацией простых SQLзапросов. Каждый простой запрос в качестве ответа возвращает набор записей таблицу а комбинация простых запросов...
15824. Создание ограничений в SQL Server 2005 416 KB
  Создание ограничений в SQL Server 2005 Создание ограничений Перед тем как начать работать с таблицами следует ограничить вводимые в них данные в целях обеспечения так называемой целостности данных т. е. ограничить возникновение в базе данных некорректных или п
15825. Создание таблиц в SQL Server 2005 376.5 KB
  Создание таблиц в SQL Server 2005 Создание таблиц и ограничений Таблицы представляют собой объекты базы данных используемые непосредственно для хранения всех данных. Одним из самых главных правил организации баз данных является то что в одной таблице должн
15826. Мифологическое знание как разновидность модельных представлений о психической регуляции труда 28.77 KB
  Мифологическое знание как разновидность модельных представлений о психической регуляции труда Для исторической науки в целом реконструкция религиозных представлений является важным критерием уровня духовного развития человеческой общности изучаемого периода иб...
15827. Изобразительные средства фиксации представлений о труде у древних славян и их предков 19.51 KB
  Изобразительные средства фиксации представлений о труде у древних славян и их предков Первыми способами применения визуальных средств для фиксации элементов труда были несомненно изображения животных объектов охоты на стенах пещер в эпоху каменного века. Множес...
15828. Песня и ритм - средства управления функциональным состоянием человека в труде 18.32 KB
  Песня и ритм средства управления функциональным состоянием человека в труде В условиях первобытнообщинного строя орудия труда были малопроизводительными и как правило их изготовление или использование в труде было связано с затратой больших физических усилий с ...
15829. Психологическое знание о труде в памятниках XI-XVII вв 28.68 KB
  Психологическое знание о труде в памятниках XIXVII вв. Летопись как известно молчит о простом человеке и тем более его труде описывая в основном деяния правящей верхушки общества. Из работ специалистовисториков реконструирующих двор и дом древнерусской рядовой...