42251

ЭЛЕКТРОМАГНИТ ПОСТОЯННОГО ТОКА

Лабораторная работа

Физика

При протекании тока по обмоткам электромагнита создается электромагнитная сила притягивающая магнитную систему к неподвижному якорю. Сила тяги электромагнита через рамку 6 воздействует на пружину 7 которая действует на индикатор перемещения поворачивая стрелку 8. Питание электромагнита осуществляется от источника 220 В через трансформатор Тр и двухполупериодный выпрямительный мост В. Изучить принципиальную схему электромагнита.

Русский

2013-10-28

66 KB

17 чел.

3. Лабораторная работа

ЭЛЕКТРОМАГНИТ ПОСТОЯННОГО ТОКА

3.1. Предмет исследования

Предметом исследования является П-образный электромагнит постоянного тока с прямоходовым притягивавшимся якорем.

3.2. Описание установки

Экспериментальная установка (рис. 3.1) состоит из П-образного магнитопровода 1, на котором расположена обмотка 9, состоящая из двух полуобмоток, включенных последовательно и в магнитном отношении согласно. На одном из вертикальных стержней и на горизонтальном стержне расположены четыре измерительные катушки, служащие для измерения магнитного потока Ф в различных точках магнитопровода (рис. 3.2). Магнитопровод 1 соединен с деталью 2, которая может перемещаться по направляющим неподвижной детали 3, с которой соединен переходник 4, удерживающий измеритель перемещения (индикатор) 5. Рамка 6, жестко связанная с деталью 2, деформирует пружину 7, которая перемещает шток индикатора и меняет положение стрелки 8. Якорь 10, соединенный с немагнитной деталью 11 может перемещаться в вертикальном направлении винтом 13 относительно неподвижной детали 12. Воздушный зазор между магнитопроводом и якорем устанавливается с помощью набора тарированных немагнитных прокладок.

При протекании тока по обмоткам электромагнита создается электромагнитная сила, притягивающая магнитную систему к неподвижному якорю. Сила тяги электромагнита через рамку 6 воздействует на пружину 7, которая действует на индикатор перемещения, поворачивая стрелку 8. Зная жесткость пружины и показания индикатора, можно вычислить силу, развиваемую электромагнитом.

Электрическая схема установки приведена на рис. 3.1,а. Питание электромагнита осуществляется от источника 220 В через трансформатор Тр и двухполупериодный выпрямительный мост В. Конденсатор С является сглаживающим фильтром, устраняющим вибрации подвижной части установки. Ток обмотки регулируется резистором R и контролируется амперметром А.

На рис. 3.2,б показано подключение измерительных обмоток к милливеберметру.

3.3. Задание на работу и
методические указания по ее выполнению

3.3.1. Изучить принципиальную схему электромагнита.

3.3.2. Измерить сопротивление обмотки электромагнита.

После включения SF1 и SF5 с помощью переключателя SA6 установить на световом индикаторе HG номер 1, соответствующий данной лабораторной работе.

При выполнении этого пункта задания необходимо включить тумблер SP1; установить резистором R максимальный ток в обмотке и рассчитать сопротивление обмотки

,

где U = 45 В - напряжение на обмотке; I - максимальный установленный ток.

3.3.3. Экспериментально определить и построить зависимость силы тяги электромагнита от воздушного зазора для трех значений тока I: 100, 150 и 250 мА (при = const).

Установить резистором R ток в обмотке 250 мА. Выключить SP1 и ввести в воздушный зазор между магнитопроводом и якорем немагнитную прокладку толщиной 0,5 мм. Слегка прижать ее винтом 13 до начала отклонения стрелки прибора (против движения часовой стрелки). Установить прибор, измерявший силу, на нуль. Включить SP1. Отпуская винт, определить максимальное отклонение стрелки прибора. Вычислить измеренное значение силы

,

где k - 1,63 Н/дел - цена деления измерительного прибора, n - число делений, соответствующее максимальному отклонению стрелки.

Выключить SP1. Измерить значения силы тяги аналогично п. 3.3.3, последовательно устанавливая в воздушном зазоре немагнитные прокладки разной толщины. По данным эксперимента построить зависимость силы тяги электромагнита от зазора.

Установить новое значение тока и в том же порядке снять тяговую характеристику. Построить на одном графике тяговые характеристики, сравнить их между собой и сделать выводы.

3.3.4. Экспериментально определить и построить зависимость силы тяги от тока для трех значений воздушного зазора - 0,5; 0,8 и 1 мм (при I - const).

Установить в воздушном зазоре немагнитную прокладку толщиной 0,5 мм. Изменяя резистором R ток в обмотке в пределах от 100 до 320 мА, снять зависимость силы тяги от тока обмотки. Установить прокладку толщиной 1 мм и повторить опыт. Измерения электромагнитной силы проводить аналогично п. 3.3.3.

3.3.5. Экспериментально определить и построить распределение магнитного потока вдоль магнитопровода (при  = const, I = const).

Установить ток в обмотке I = 250 мА. Подключить милливеберметр к клеммам рФ. Установить воздушный зазор 0,5 мм. Переключить SA в положение 1, фиксируемое по индикатору И2. Включая и отключая SP1, измерить отброс стрелки милливеберметра. Вычислить значение магнитосцепления

= С  n ,

а по нему соответствующий магнитный поток , который определяется, как известно, из соотношения

= /Nиз ,

где С = 0,1 мВб  цена деления милливеберметра; n  отброс стрелки; Nи = 15 – число витков каждой измерительной обмотки. Переключить SА последовательно в положения 2, 3, 4 и повторить опыты. По четырем значениям магнитного потока построить зависимость потока от длины (от места расположения измерительной катушки, т.е. от ее номера на рис. 3.2,а).

3.3.6. Рассчитать значение электромагнитной силы на основании замеренных магнитных потоков

по формуле Д.К. Максвелла

,     (1)

и по энергетической формуле

,    (2)

где 0 = 410-7 Гн/м  магнитная постоянная,

F = IN  МДС обмотки электромагнита; 

N  число витков обмотки управления (см. табл. 3.1);

а и b  линейные размеры зазора (рис. 3.3);

kзс  коэффициент заполнения по стали (для сплошных магнитопроводов  1; а для шихтованных  0,74).

Таблица 3.1.

Данные для различных стендов

№ стенда

Размеры, мм

a

b

c

d

L

kзс

N

I

10

30

20

15

40

1

2400

II

10

30

20

14

40

1

2400

III

10

20

21,5

12

63

0,74

3000

IV

10

20

21,5

12

63

0,74

3000

Рис. 3.3. Размеры зазора и  полюса электромагнита

При использовании формулы Максвелла (1) в нее подставляется значение магнитного потока в обмотке 1. Результаты расчетов сравнить с экспериментальными данными.

3.4. Контрольные вопросы

1. Какие факторы влияют на силу тяги электромагнита?

2. В каких единицах измеряется МДС?

3. В каких единицах измеряется потокосцепление?

4. В каких единицах измеряется магнитный поток?

5. В каких единицах измеряются разность магнитных потенциалов и магнитное напряжение?

6. Существует ли связь между потокосцеплением и магнитным потоком? Если да, то какая?

7. Существует ли связь между МДС и магнитным напряжением? Если да, то какая?

8. Имеется ли связь между МДС и магнитным потоком? Если да, то какая?

9. Как зависит электромагнитная сила от зазора ?

10. Как зависит электромагнитная сила от тока I в обмотке электромагнита?

11. Чему равна мощность, потребляемая обмоткой электромагнита? В чем она измеряется?

12. Как зависит сила тяги от тока для ненасыщенной и насыщенной магнитных систем?

13. Почему магнитный лоток в системе не остается всюду постоянным?

14. Что такое потоки рассеяния и как они влияют на электромагнитную силу?


 

А также другие работы, которые могут Вас заинтересовать

23012. Методи дослідження в мовознавстві 35 KB
  Методи дослідження в мовові Термін метод від гр. дослідження вчення шлях пізнання неоднозначний: він уживається в загальнонауковому філософському значенні у спеціальнонауковому що стосується певної галузі науки: в значенні прийом спосіб дії яке звичайно позначається словом методика. їх часто називають методами. наведення метод дослідження згідно з яким на підставі знання про окреме роблять висновок про загальне.
23013. Синхронічний та діахронічний аспекти вивчення мовних одиниць 33 KB
  syn разом і chronos час тобто одночасність 1 стан мови в певний момент її розвитку в певну епоху; 2 вивчення мови в цьому стані в абстракції від часового чинника. dia через і chronos час тобто різночасність 1 історичний розвиток мови; 2 дослідження мови в часі в її історичному розвитку. Поступові кількісні зміни у мові протягом століть зумовили Якісні зміни причому такі що сучасному мовцеві важко зрозуміти давні тексти. Відповідно в мовознавстві розрізняють стан мови та розвиток мови.
23014. Проблема походження мови, основні теорії походження мови 43.5 KB
  Проблема походження мови основні теорії походження мови. Проблема походження мови є дуже складною. проблему походження мови порушувалася в межах філософських дискусій про сутність мови. Представники школи Платона вважали що назви предметам даються не довільно а відповідно до їх Природи що свідчить про природний характер мови і відповідно закономірну біологічну зумовленість її виникнення.
23015. Синтагматичний та парадигматичний аспекти дослідження мовних одиниць 28 KB
  Синтагматичний та парадигматичний аспекти дослідження мовних одиниць. Синтагматика – один із двох системних аспектів у вивченні мови який розглядає відношення між послідовно розташованими одиницями за їхнього безпосереднього поєднання в реальному потоці мовлення або в тексті тобто сполучуваність мовних одиниць. Парадигматична методика охоплює опозиційний прийом на основі зіставлення і протиставлення мовних одиниць встановлюються їх диференційні ознаки а на основі спільності й відмінності одиниці об'єднуються в різні парадигматичні...
23016. Фактори розвитку мов. Поняття національна мова, літературна мова 29 KB
  Поняття національна мова літературна мова. Літературна мова – унормована мова суспільного спілкування загальноприйнята в писемній та усній практиці. Літературна мова одна із форм національної мови що існує поряд з іншими її формами – діалекти просторіччя мова фольклору.мови нормованість кодифікованість полі функціональність загально значущість наявність не тільки писемного а й усного різновиду.
23017. Семіотика як наука про знакові системи 35 KB
  Вивчення мови на рівних правах і тотожними методами мислиться в складі семіології єдиної науки про знаки. За першою класифікацією всі знаки поділяють на знакиіндекси знакикопії знакисигнали і знакисимволи. Знакиіндекси знакиприкмети і знакисимптоми знаки пов'язані з позначуваними предметами як дії зі своїми причинами. Знакикопії відтворення репродукції подібні на позначувані предмети.
23018. Мова як особлива знакова система 34 KB
  Мова як особлива знакова система. Знак матеріальний чуттєво сприйманий предмет який є представником іншого предмета і використовується для отримання зберігання і передачі інформації У світі існують різноманітні системи знаків які служать для передачі інформації. Серед них наприклад дорожні знаки морська сигналізація прапорцями та інші знаки. Основними ознаками знака є матеріальність його можна бачити чути тобто сприймати органами чуттів використання його для позначення чогось що перебуває поза ним інформативність.
23019. Основні властивості знаків, мовних знаків 34.5 KB
  Основні властивості знаків мовних знаків. Про довільність мовних знаків свідчить той факт що одні й ті ж поняття в різних мовах передаються різними словами укр. До вмотивованих мовних знаків передусім належать звуконаслідувальні слова типу бух ляп хлоп хіхікати. Саме завдяки цьому асиметричному дуалізмові структури знаків лінгвальна система може еволюціонувати.
23020. Мова і мовлення 32 KB
  Мова і мовлення Мова система одиниць спілкування і правил їх функціонування. Іншими словами мова це інвентар словник і граматика які існують у потенції в можливості Мовлення конкретно застосована мова засоби спілкування в їх реалізації. Усе те що пересічні мовці розуміють під словом мова насправді є власне мовою і мовленням. Розмежування мови і мовлення теоретично обґрунтоване швейцарським лінгвістом Ф.