42253

Выполнение базовых преобразований на плоскости

Лабораторная работа

Информатика, кибернетика и программирование

Трансляция точки выполняется путем добавления смещения [m n] к ее координатам [x y], в результате чего получается точка с новыми координатами. Для объекта, описываемого множеством точек, все точки объекта перемещаются на одинаковые расстояния вдоль параллельных прямых. В матричной форме трансляция выполняется путем умножения однородных координат точки на матрицу трансляции

Русский

2013-10-28

98.5 KB

3 чел.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт кибернетики

Информационные системы и технологии

Кафедра вычислительной техники

Базовые алгоритмы 2D-геометрии

Отчет по лабораторной работе № 3

по дисциплине  «Компьютерная геометрия и графика»

Студент

гр. 8990             ____________ А.С. Цуркова

                   (подпись)

                                       _    

                      (дата)

Руководитель

доцент каф. ВТ____________ О.С. Токарева

                   (подпись)

                             _

                (дата)

Томск – 2012

Цель работы

Изучить способы выполнения базовых преобразований на плоскости.

Задание

Написать программу, выполняющие следующие функции:

  •  чтение из файла координат вершин многоугольника, заданных в мировой системе координат;
  •  переход от мировых координат к экранным координатам, используя формулы (см. лекции);
  •  отрисовка фигур и осей координат в окне, так чтобы было место для отображения фигур после выполнения геометрических преобразований;
  •  выполнение преобразований над фигурами в соответствии с заданием по командам пользователя (использовать меню, кнопки, горячие клавиши).

Требования:

  •  реализация всех преобразований через перемножение матриц с использованием однородных координат;
  •  равномерное масштабирование реализовать через правый нижний элемент s матрицы преобразований;
  •  для построения эллипса и окружности использовать параметрическое описание;
  •  после выполнения преобразования должна производиться перерисовка содержимого окна (старое изображение заменяется на новое);
  •  необходимо реализовать возврат фигуры в исходное положение по нажатию на кнопку в окне (или при выборе пункта меню);
  •   предусмотреть возможность выполнить композицию преобразований по нажатию одной кнопки.

• Повернуть относительно точки L на 30 градусов по часовой стрелке.

Теоретические положения

В ходе выполнения данной работы были созданы массивы trgl[3][3],okr[9][3],oval[9][3] для хранения точек треугольника, окружности и овала соответственно. Был реализован пересчет мировых координат в экранные: perevod() .

Все преобразования над фигурами были выполнены через перемножение матриц. Были использованы: трансляция, отображение, двухмерный поворот и масштабирование.

Трансляция точки выполняется путем добавления смещения [m n] к ее координатам [x y], в результате чего получается точка с новыми координатами. Для объекта, описываемого множеством точек, все точки объекта перемещаются на одинаковые расстояния вдоль параллельных прямых. В матричной форме трансляция выполняется путем умножения однородных координат точки на матрицу трансляции:

.

Отражение – преобразование, генерирующее зеркальное отображение объекта.

- отражение относительно оси x (y=0),

 - отражение относительно оси y (x=0),

- отражение относительно начала координат,

- отражение относительно оси y=x,

 - отражение относительно оси y=x.

Двумерный поворот – перемещение объекта по круговой траектории на плоскости xoy. В этом случае объект поворачивается относительно оси вращения, перпендикулярной плоскости xoy. Для двумерного поворота задается точка, вокруг которой будет производится поворот и угол вращения. Поворот точки на угол φ вокруг начала координат выполняется путем умножения однородных координат точки на матрицу поворота R:

.

В компьютерной графике поворот на положительный угол φ выполняется против часовой стрелки.

Масштабирование выполняется путем умножения однородных координат точки на матрицу масштабирования S:

, где sx, sy – любые положительные числа, sx – коэффициент масштабирования по x, sy – коэффициент масштабирования по y. При sx>1 и sy>1 масштаб увеличивается, при sx<1 (sx>0) и sy<1 (sy >0)–  уменьшается.

Все преобразования были реализованы в среде C++ Builder при помощи синтаксиса языка C++.

Текст программы

#include <vcl.h>

#include <stdio.h>

#include <math.h>

#pragma hdrstop

#include "lab3.h"

//---------------------------------------------------------------------------

#pragma package(smart_init)

#pragma resource "*.dfm"

TForm1 *Form1;

float trgl[3][3],okr[9][3],oval[9][3];

float trglR[3][3],okrR[9][3],ovalR[9][3];

void novii();

void trglris();

void okrris();

void ovalris();

void novkord();

void perevod();

int pointpov[1][2];

float matrix[3][3],massiv[42];

void reading();

void multiply();

//---------------------------------------------------------------------------

__fastcall TForm1::TForm1(TComponent* Owner)

: TForm(Owner)

{

}

//---------------------------------------------------------------------------

void perevod()

{

for (int i=0;i<3;i++)

{

 trglR[i][0]=trgl[i][0]*10+Form1->Plosk->Width/2;

 trglR[i][1]=Form1->Plosk->Height/2-trgl[i][1]*10;

}

for (int i=0;i<9;i++)

{

 okrR[i][0]=okr[i][0]*10+Form1->Plosk->Width/2;

 okrR[i][1]=Form1->Plosk->Height/2-okr[i][1]*10;

}

for (int i=0;i<9;i++)

{

 ovalR[i][0]=oval[i][0]*10+Form1->Plosk->Width/2;

 ovalR[i][1]=Form1->Plosk->Height/2-oval[i][1]*10;

}

}

//---------------------------------------------------------------------------

void trglris()

{

Form1->Plosk->Canvas->MoveTo(trglR[0][0],trglR[0][1]);

Form1->Plosk->Canvas->LineTo(trglR[1][0],trglR[1][1]);

Form1->Plosk->Canvas->LineTo(trglR[2][0],trglR[2][1]);

Form1->Plosk->Canvas->LineTo(trglR[0][0],trglR[0][1]);

}

//--------------------------------------------------------------------------

void okrris()

{

Form1->Plosk->Canvas->MoveTo(okrR[0][0],okrR[0][1]);

for (int i=1;i<8;i++)

{

 Form1->Plosk->Canvas->LineTo(okrR[i+1][0],okrR[i+1][1]);

}

Form1->Plosk->Canvas->LineTo(okrR[0][0],okrR[0][1]);

}

//-------------------------------------------------------------------------

void ovalris()

{

Form1->Plosk->Canvas->MoveTo(ovalR[0][0],ovalR[0][1]);

for (int i=1;i<8;i++)

{

 Form1->Plosk->Canvas->LineTo(ovalR[i][0],ovalR[i][1]);

}

Form1->Plosk->Canvas->LineTo(ovalR[0][0],ovalR[0][1]);

}

//-------------------------------------------------------------------------

void novkord()

{

Form1->Plosk->Canvas->Brush->Color=clWhite;

Form1->Plosk->Canvas->FillRect(Form1->Canvas->ClipRect);

Form1->Plosk->Canvas->Rectangle((pointpov[0][0]*10+Form1->Plosk->Width/2)

       ,(Form1->Plosk->Height/2-pointpov[0][1]*10)

       ,(pointpov[0][0]*10+Form1->Plosk->Width/2)+3

       ,(Form1->Plosk->Height/2-pointpov[0][1]*10)+3);

Form1->Plosk->Canvas->MoveTo(0,(Form1->Plosk->Height)/2);

Form1->Plosk->Canvas->LineTo(Form1->Plosk->Width,(Form1->Plosk->Height)/2);

int incr=0;

for (int i=(Form1->Plosk->Width)/2;;incr=incr+10)

{

 if (((i-incr)>=0)&&((i+incr)<=(Form1->Plosk->Width)))

   {

 Form1->Plosk->Canvas->MoveTo(i-incr,(Form1->Plosk->Height)/2-3);

 Form1->Plosk->Canvas->LineTo(i-incr,(Form1->Plosk->Height)/2+3);

 Form1->Plosk->Canvas->MoveTo(i+incr,(Form1->Plosk->Height)/2-3);

 Form1->Plosk->Canvas->LineTo(i+incr,(Form1->Plosk->Height)/2+3);

   }

 else break;

}

Form1->Plosk->Canvas->MoveTo(Form1->Plosk->Width-10,(Form1->Plosk->Height)/2-4);

Form1->Plosk->Canvas->LineTo(Form1->Plosk->Width,(Form1->Plosk->Height)/2);

Form1->Plosk->Canvas->MoveTo(Form1->Plosk->Width-10,(Form1->Plosk->Height)/2+4);

Form1->Plosk->Canvas->LineTo(Form1->Plosk->Width,(Form1->Plosk->Height)/2);

//---------------------------------------------------------//

Form1->Plosk->Canvas->MoveTo((Form1->Plosk->Width)/2,0);

Form1->Plosk->Canvas->LineTo((Form1->Plosk->Width)/2,Form1->Plosk->Height);

incr=0;

for (int i=(Form1->Plosk->Height)/2;;incr=incr+10)

{

 if (((i-incr)>=0)&&((i+incr)<=(Form1->Plosk->Height)))

   {

 Form1->Plosk->Canvas->MoveTo((Form1->Plosk->Width)/2-3,i-incr);

 Form1->Plosk->Canvas->LineTo((Form1->Plosk->Width)/2+3,i-incr);

 Form1->Plosk->Canvas->MoveTo((Form1->Plosk->Width)/2-3,i+incr);

 Form1->Plosk->Canvas->LineTo((Form1->Plosk->Width)/2+3,i+incr);

   }

 else break;

}

Form1->Plosk->Canvas->MoveTo((Form1->Plosk->Width)/2-4,10);

Form1->Plosk->Canvas->LineTo((Form1->Plosk->Width)/2,0);

Form1->Plosk->Canvas->MoveTo((Form1->Plosk->Width)/2+4,10);

Form1->Plosk->Canvas->LineTo((Form1->Plosk->Width)/2,0);

}

//-----------------------------------------------------------------------------

void novii()

{

for(int i=0;i<3;i++)

 for(int j=0;j<3;j++)matrix[i][j]=0;

trgl[0][0]=massiv[0]; trgl[0][1]=massiv[1];

trgl[1][0]=massiv[2];   trgl[1][1]=massiv[3];

trgl[2][0]=massiv[4];   trgl[2][1]=massiv[5];

okr[0][0]=massiv[6];   okr[0][1]=massiv[7]; okr[0][2]=1;

okr[1][0]=massiv[8];   okr[1][1]=massiv[9]; okr[1][2]=1;

okr[2][0]=massiv[10];   okr[2][1]=massiv[11]; okr[2][2]=1;

okr[3][0]=massiv[12];   okr[3][1]=massiv[13]; okr[3][2]=1;

okr[4][0]=massiv[14];   okr[4][1]=massiv[15]; okr[4][2]=1;

okr[5][0]=massiv[16];   okr[5][1]=massiv[17]; okr[5][2]=1;

okr[6][0]=massiv[18];   okr[6][1]=massiv[19]; okr[6][2]=1;

okr[7][0]=massiv[20];   okr[7][1]=massiv[21]; okr[7][2]=1;

okr[8][0]=massiv[22];   okr[8][1]=massiv[23]; okr[8][2]=1;

oval[0][0]=massiv[24];   oval[0][1]=massiv[25]; oval[0][2]=1;

oval[1][0]=massiv[26];   oval[1][1]=massiv[27]; oval[1][2]=1;

oval[2][0]=massiv[28];   oval[2][1]=massiv[29]; oval[2][2]=1;

oval[3][0]=massiv[30];   oval[3][1]=massiv[31]; oval[3][2]=1;

oval[4][0]=massiv[32];   oval[4][1]=massiv[33]; oval[4][2]=1;

oval[5][0]=massiv[34];   oval[5][1]=massiv[35]; oval[5][2]=1;

oval[6][0]=massiv[36];   oval[6][1]=massiv[37]; oval[6][2]=1;

oval[7][0]=massiv[38];   oval[7][1]=massiv[39]; oval[7][2]=1;

pointpov[0][0]=massiv[40]; pointpov[0][1]=massiv[41];

perevod();

trglris();

okrris();

ovalris();

}

//---------------------------------------------------------------------------

void __fastcall TForm1::FormCreate(TObject *Sender)

{

reading();

pointpov[0][0]=1; pointpov[0][1]=-2;

novkord();

novii();

}

//---------------------------------------------------------------------------

void __fastcall TForm1::retrnClick(TObject *Sender)

{

Form1->Plosk->Canvas->Brush->Color=clWhite;

Form1->Plosk->Canvas->FillRect(Canvas->ClipRect);

novkord();

novii();

}

//---------------------------------------------------------------------------

void __fastcall TForm1::SdvigVNClick(TObject *Sender)

{

Form1->Canvas->Brush->Color=clBlack;

novkord();

matrix[0][0]=1;

matrix[0][1]=0;

matrix[1][0]=0;

matrix[1][1]=1;

matrix[0][2]=0;

matrix[1][2]=0;

if(Form1->CheckBox1->Checked==true)matrix[2][1]=2;

else matrix[2][1]=-2;

matrix[2][0]=0;

matrix[2][2]=1;

trgl[0][2]=1;

trgl[1][2]=1;

trgl[2][2]=1;

multiply();

perevod();

trglris();

okrris();

ovalris();

}

//---------------------------------------------------------------------------

void __fastcall TForm1::SdvigPLClick(TObject *Sender)

{

Form1->Canvas->Brush->Color=clBlack;

novkord();

matrix[0][0]=1;

matrix[0][1]=0;

matrix[1][0]=0;

matrix[1][1]=1;

matrix[0][2]=0;

matrix[1][2]=0;

if(Form1->CheckBox2->Checked==true)matrix[2][0]=2;

else matrix[2][0]=-2;

matrix[2][1]=0;

matrix[2][2]=1;

trgl[0][2]=1;

trgl[1][2]=1;

trgl[2][2]=1;

multiply();

perevod();

trglris();

okrris();

ovalris();

}

//---------------------------------------------------------------------------

void __fastcall TForm1::povorotClick(TObject *Sender)

{

novkord();

double ugol;

ugol=M_PI/6;

matrix[0][0]=cos(ugol);

matrix[0][1]=-sin(ugol);

matrix[1][0]=sin(ugol);

matrix[1][1]=cos(ugol);

matrix[0][2]=0;

matrix[1][2]=0;

matrix[2][0]=-pointpov[0][0]*cos(ugol)-pointpov[0][1]*sin(ugol)+pointpov[0][0];

matrix[2][1]=pointpov[0][0]*sin(ugol)-pointpov[0][1]*cos(ugol)+pointpov[0][1];

matrix[2][2]=1;

trgl[0][2]=1;

trgl[1][2]=1;

trgl[2][2]=1;

multiply();

perevod();

trglris();

okrris();

ovalris();

}

//---------------------------------------------------------------------------

void __fastcall TForm1::OtrXClick(TObject *Sender)

{

Form1->Plosk->Canvas->Pen->Color=clWhite;

perevod();

trglris();

okrris();

ovalris();

matrix[0][0]=1;

matrix[0][1]=0;

matrix[1][0]=0;

matrix[1][1]=-1;

multiply();

Form1->Plosk->Canvas->Pen->Color=clBlack;

perevod();

trglris();

okrris();

ovalris();

}

//---------------------------------------------------------------------------

void __fastcall TForm1::otrYClick(TObject *Sender)

{

Form1->Plosk->Canvas->Pen->Color=clWhite;

perevod();

trglris();

okrris();

ovalris();

matrix[0][0]=-1;

matrix[0][1]=0;

matrix[1][0]=0;

matrix[1][1]=1;

multiply();

Form1->Plosk->Canvas->Pen->Color=clBlack;

perevod();

trglris();

okrris();

ovalris();

}

//---------------------------------------------------------------------------

void __fastcall TForm1::ScaleClick(TObject *Sender)

{

Form1->Plosk->Canvas->Pen->Color=clWhite;

perevod();

trglris();

okrris();

ovalris();

matrix[0][1]=0;

matrix[1][0]=0;

if (Form1->CheckBox3->Checked==true)

  {

matrix[0][0]=2.0;

matrix[1][1]=2.0;

  }

else

  {

matrix[0][0]=0.5;

matrix[1][1]=0.5;

  }

multiply();

Form1->Plosk->Canvas->Pen->Color=clBlack;

perevod();

trglris();

okrris();

ovalris();

}

//---------------------------------------------------------------------------

void __fastcall TForm1::FormKeyPress(TObject *Sender, char &Key)

{

if(Key=='1')Form1->retrnClick(Sender);

if(Key=='2')Form1->povorotClick(Sender);

if(Key=='3')Form1->SdvigVNClick(Sender);

if(Key=='4')Form1->SdvigPLClick(Sender);

if(Key=='5')Form1->OtrXClick(Sender);

if(Key=='6')Form1->otrYClick(Sender);

if(Key=='7')Form1->ScaleClick(Sender);

}

//---------------------------------------------------------------------------

void reading()

{

TFileStream *file=new TFileStream("figuri.dat",fmOpenRead);

TStringList *list=new TStringList;

list->LoadFromStream(file);

AnsiString Spisok=list->Text;

delete list;

delete file;

AnsiString temp="";

int mas[42],i1=0;

for (int i = 0; i < (Spisok.Length()-2); i++)

{

 if ((Spisok.c_str()[i] != ' '))

   temp=temp+Spisok.c_str()[i];

 else

 {

  mas[i1] = StrToInt(temp);

  temp = "";

  i1++;

 }

}

for (int i=0;i<42;i++)

   massiv[i]=mas[i]/10;

}

//----------------------------------------------------------------------------

void multiply ()

{

float tmpshape[3][3];

for (int k = 0; k < 3; k++)

for (int i = 0; i < 3; i++)

{

  tmpshape[k][i] = 0;

  for (int j = 0; j < 3; j++)

  {

 tmpshape[k][i] =tmpshape[k][i]+ matrix[j][i]*trgl[k][j];

  }

}

 for (int i = 0; i < 3; i++)

for (int j = 0; j < 2; j++) trgl[i][j]=tmpshape[i][j];

float tmpokr[9][3];

 for (int k = 0; k < 9; k++)

for (int i = 0; i < 3; i++)

{

  tmpokr[k][i] = 0;

  for (int j = 0; j < 3; j++)

  {

 tmpokr[k][i] =tmpokr[k][i]+ matrix[j][i]*okr[k][j];

  }

}

 for (int i = 0; i < 9; i++)

for (int j = 0; j < 2; j++) okr[i][j]=tmpokr[i][j];

 float tmpoval[9][3];

 for (int k = 0; k < 9; k++)

for (int i = 0; i < 3; i++)

{

  tmpoval[k][i] = 0;

  for (int j = 0; j < 3; j++)

  {

 tmpoval[k][i] =tmpoval[k][i]+ matrix[j][i]*oval[k][j];

  }

}

 for (int i = 0; i < 9; i++)

for (int j = 0; j < 2; j++) oval[i][j]=tmpoval[i][j]

}

ВЫВОД

В ходе выполнения лабораторной работы было получено представление об основных преобразованиях плоских фигур. Это было реализовано через перемножение матриц с использованием однородных координат, без накопления ошибок в исходной матрице. Использование матриц является очень удобным т.к. все изменения происходят путем их перемножения, следовательно, это не требует сложных математических преобразований, достаточно реализовать функцию перемножения матриц.   В соответствии с заданием была выполнена работа по преобразованию окружности, овала и треугольника (перенос, отражение, масштабирование, поворот).


 

А также другие работы, которые могут Вас заинтересовать

31611. СЕРЦЕВА НЕДОСТАТНІСТЬ 87.5 KB
  Недостатність серця це патологічний стан при якому навантаження на серце перевищує його здатність виконувати роботу по переміщенню крові у кровоносному руслі та забезпечувати кровопостачання органів і тканин відповідно до їх потреб. Недостатність серця класифікують: I. У залежності від клінічного перебігу розрізняють: а гостру і б хронічну недостатність серця. За виразністю клінічних проявів виділяють: а компенсовану і б декомпенсовану недостатність серця.
31612. СЕРЦЕВА НЕДОСТАТНІСТЬ 131.5 KB
  При цьому стан кровообігу визначається: а діяльністю серця б тонусом судин і в станом крові її загальною і циркулюючою масою а також реологічними властивостями. Порушення функції серця судинного тонусу чи зміни в системі крові можуть призвести до недостатності кровообігу. Усього на сьогоднішній день відомо більш 50 факторів ризику істотна роль яких у виникненні хвороб серця і судин чітко встановлена. Недостатність серця патологічний стан обумовлений нездатністю серця забезпечити кровопостачання органів і тканин відповідно до їх...
31613. СПАДКОВІСТЬ І ПАТОЛОГІЯ 85.5 KB
  Першу групу складають власне спадкові хвороби у яких етіологічну роль відіграє зміна спадкових структур роль середовища полягає лише в модифікації проявів захворювання. У цю групу входять: генні і хромосомні хвороби. □ Друга група екогенетична спадкові хвороби обумовлені патологічною мутацією однак для їх прояву необхідний специфічний вплив середовища. Основним етіологічним фактором у їх виникненні є несприятливий вплив середовища але реалізація дії фактора залежить від індивідуальної генетично детермінованої схильності організму у...
31614. УШКОДЖЕННЯ КЛІТИНИ 80 KB
  2 У залежності від ступеня порушень внутрішньоклітинного гомеостазу розрізняють: а зворотні зникають після припинення дії ушкоджуючого фактора б незворотні ведуть до загибелі клітини. 3 В залежності від періоду життєвого циклу клітини: а мітотичне і б інтерфазне. Насильницьке виникає у разі дії на здорову клітину фізичних хімічних і біологічних факторів інтенсивність яких перевищує порогові подразнення до яких клітина адаптувалася Цитопатичне виникає внаслідок первинного порушення захиснопристосувальних...
31615. АНЕМІЇ 83.5 KB
  Механічний гемоліз виникає внаслідок механічного руйнування еритроцитів при роздавлюванні еритроцитів у судинах стопи маршовий гемоліз. Окисний гемоліз розвивається унаслідок вільнорадикального окислювання ліпідів і білків плазматичної мембрани еритроцитів коли збільшується проникність еритроцитарної мембрани що надалі веде до реалізації осмотичного механізму гемолізу. Детергентний гемоліз зв’язаний з розчиненням ліпідних компонентів мембрани еритроцитів речовинамидетергентами.
31616. АРИТМІЇ СЕРЦЯ а головною причиною раптової смерті при серцевій патології у 93 є. 68 KB
  1 Номотопні аритмії при яких генерація імпульсів як і в нормі відбувається пейсмейкерними клітинами pce nd mker Рклітинами в синуснопередсердному вузлі. За цих умов генерація імпульсів відбувається не в синуснопередсердному вузлі а в інших структурах провідної системи що є водіями ритму II і III порядку. При цьому можуть розвиватися наступні види патологічних ритмів серця: а передсердний повільний ритм водій ритму знаходиться в структурах лівого передсердя частота серцевих скорочень менше 70 у 1 хв; б атріовентрикулярний...
31617. ГАРЯЧКА 74.5 KB
  Температура тіла безумовно не може служити в цьому розумінні універсальним критерієм однак не залежне від зовнішньої температури “саморозігрівання†організму супроводжує багато різноманітних за походженням хвороб маючи при цьому у своїй основі єдиний патофізіологічний механізм. Гарячка проявляється тимчасовим підвищенням температури тіла не залежно від температури зовнішнього середовища і звичайно супроводжується рядом характерних змін обміну речовин і фізіологічних функцій. 2 Нейрони “заданого рівня температури†група...
31618. ГІПОКСІЯ 82 KB
  І Екзогенний тип гіпоксії гіпоксична гіпоксія виникає внаслідок зменшення парціального тиску кисню у повітрі. При підйомі в гори з врахуванням ознак гіпоксії що розвивається виділяють наступні зони: I. Висотна хвороба гостра чи блискавична форма гіпоксичної гіпоксії яка виникає під час висотних польотів у літальних апаратах з кабінами відкритого типу чи при порушенні герметичності кабін закритого типу. Патогенетичною основою екзогенного типу гіпоксії у всіх випадках є артеріальна гіпоксемія тобто зменшення тиску кисню в...
31619. ЕКСТРЕМАЛЬНІ СТАНИ 132.5 KB
  Велика кількість крові скопичується в розширених венозних і артеріальних судинах черевної порожнини легень підшкірної клітковини що значно зменшує ОЦК і АТ і отже приплив крові до серця. Обумовлене цим зниження серцевого викиду крові приводить до ще більшого зменшення ОЦК і АТ що ускладнює стан пацієнта. У результаті зазначених змін розвивається комплекс закономірних стереотипних взаємозалежних змін в організмі до яких відносять тріаду характерних порушень: 1 Розлади і недостатність функцій органів і фізіологічних систем:...