42265
ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ОПТИЧЕСКОЙ ОСИ В ОДНООСНЫХ КРИСТАЛЛАХ КОНОСКОПИЧЕСКИМ МЕТОДОМ
Лабораторная работа
Коммуникация, связь, радиоэлектроника и цифровые приборы
Поэтому при изготовлении деталей необходимо знать положение оптической оси относительно рабочих поверхностей детали. Одним из методов определения ее положения является коноскопический основанный на том что в направлении оптической оси кристалла у одноосного кристалла оптическая ось совпадает с кристаллографической анизотропия оптических свойств отсутствует. Он состоит из широкого источника света S скрещенных поляризатора П и анализатора А кристаллической пластины К вырезанной перпендикулярно оптической оси кристалла и двух...
Русский
2013-10-28
4.42 MB
54 чел.
- 40 -
ЛАБОРАТОРНАЯ РАБОТА №5
ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ОПТИЧЕСКОЙ ОСИ В ОДНООСНЫХ КРИСТАЛЛАХ КОНОСКОПИЧЕСКИМ МЕТОДОМ
Цель работы - изучение коноскопического метода ориентации одно-осных кристаллов и контроль положения оптической оси в пластинках из кристаллического кварца.
Кристаллы, в отличие от стекол, характеризуются ярко выраженной анизотропией свойств. Механические, акустические, оптические, электри-ческие и другие свойства кристаллов зависят от направления их измерения. Поэтому при изготовлении деталей необходимо знать положение опти-ческой оси относительно рабочих поверхностей детали. Одним из методов определения ее положения является коноскопический, основанный на том, что в направлении оптической оси кристалла (у одноосного кристалла оптическая ось совпадает с кристаллографической) анизотропия опти-ческих свойств отсутствует.
Рис.19. Образование коноскопической картины.
Оптическая схема коноскопа
Прежде чем приводить описание эффектов, получаемых при коно-скопических наблюдениях, напомним несколько основных определений.
Плоскость падания - плоскость, содержащая падающий луч и нор-маль к поверхности кристалла. Оптическая ось кристалла - прямая, про-веденная через любую точку кристалла в направлении, в котором отсутству-ет двойное лучепреломление или направление в кристалле, вдоль которого скорость распространения света не зависит от ориентации плоскости поля-ризации света. Главное сечение кристалла - плоскость, содержащая опти-ческую ось кристалла и проходящий через него луч.
Для объяснения эффектов, происходящих при наблюдениях, рас-смотрим оптическую схему коноскопа (рис.19).
Он состоит из широкого источника света S, скрещенных поляриза-тора П и анализатора А, кристаллической пластины К, вырезанной перпен-дикулярно оптической оси кристалла, и двух плосковыпуклых линз Л1 и Л2, фокусы которых совмещены с центром кристаллической пластины. Плас-тина освещается пучками параллельных лучей, угол и плоскость падения которых различны. Падающий от источника S пучок света разделяется в пластине К на два: обыкновенный, характеризуемый показателем прелом-ления n0, и необыкновенный nВ. Плоскость колебания вектора Е обыкно-венного луча совпадает с плоскостью падения, плоскость колебаний век-тора Е необыкновенного луча перпендикулярна плоскости падения. Линза Л2 дает интерференционный эффект в плоскости F. Поляризатор П и ана-лизатор А обеспечивают возможность наблюдения интерференционной картины. При фиксированных положениях поляризатора и анализатора разность фаз между обыкновенным и необыкновенным лучами, вышед-шими под одинаковыми углами к оптической оси ОО, равна
-, (18)
где d - толщина пластины; - длина волны падающего света.
Из формулы (1) видно, что лучи, имеющие равные углы наклона к оптической оси, будут иметь одинаковую разность фаз. Поэтому в плос-кости F - плоскости локализации интерференционной картины - будут наблюдаться концентрические окружности. При использовании монохро-матического света окружности имеют вид светлых и темных колец, соответствующих интерференционным максимумам и минимумам.
При скрещенных поляризаторе и анализаторе в центре интер-ференционной картины будет наблюдаться минимум.
Следует обратить внимание на непостоянство интенсивности кон-центрических колец по окружности. Действительно, можно показать, что интенсивность J света, прошедшего через поляризатор, зависит от углов
Рис.20. Определение углов и
(рис.20) и разности фаз между обыкновенным и необыкновенным лучами :
П - направление колебаний, пропускаемых поляризатором; А - на-правление колебаний, пропускаемых анализатором; К - направление одного из главных сечений кристаллической пластины: меняется от 0 до 2
J = J0 , (19)
где J0 - интенсивность падающего на поляризатор света; - угол между направлением колебаний, пропускаемых поляризатором и одним из главных сечений пластины; - угол между направлением колебаний, про-пускаемых анализатором и тем же главным сечением пластины; - угол между главным сечением поляризатора и анализатора. В нашем случае поляризатор и анализатор скрещены, т.е. и формула (19) может быть упрощена:
(20)
Так как в пределах одного кольца = const, то изменение вызовет изменением яркости кольца. При и (направления, совпадающие с направлением колебаний, пропускаемых поляризатором и анализатором) независимо от яркость кольца равна нулю. Таким образом, интерферен-ционная картина, получаемая от одноосного кристалла, будет представлять
Рис.21. Интерференционная картина от одноосного кристалла.
Оптическая ось перпендикулярна рабочим граням.
ряд концентрических колец, пересекаемых темным крестом (рис.21), расши-ряющимся по мере увеличения угла падения света на пластинку.
Если оптическая ось пластины К не перпендикулярна её рабочим граням (1,1 - 2,2) и составляет некоторый угол с оптической осью ОО прибора (см.рис.19), то интерференционная картина в плоскости F смес-тится. При вращении кристаллической пластинки центр интерференци-онной картины будет описывать некоторую окружность вокруг центра поля зрения, а фигура будет перемещаться параллельно самой себе, что характе-ризует непараллельность осей ОО прибора и контролируемой пластины (рис.22.а - при выходе оптической оси в поле зрения микроскопа, б - в случае выхода оптической оси за пределы поля зрения).
Если рабочие грани пластины вырезана параллельно оптической оси кристалла, то в плоскости F будет наблюдаться интерференционная карти-
Рис.23. Интерференционная картина от кристалла, оптическая
ось которого, ориентированна параллельно рабочим граням
на, вид которой также можно определить из анализа формулы (19). Интерференционная картина, получаемая при скрещенных поляризаторе и анализаторе для этого случая, приведена на рис.23.
Если оптическая ось кристалла непараллельна рабочим граням плас-тины и составляет с ними угол малой величины, то картина в плоскости F (рис.23) сместится. При вращении пластины вокруг оси ОО` центр картины будет описывать некоторую окружность, следовательно, и в этом случае смещение интерференционной картины характеризует неперпендикуляр-ность оптических осей ОО` прибора и кристаллической пластины.
Для контроля ориентации оптической оси в работе используется поляризационный микроскоп, который состоит из коноскопа и собственно микроскопа с небольшим увеличением.
Внешний вид прибора приведен на рис.24. Коноскоп состоит из осветительной системы 6, поворотного столика 5, объектива 4, призмы-анализатора 3.
Микроскоп образован линзой Бертрана 2, окуляром 1.
Конструктивно эти элементы расположены следующим образом:
объектив 4 и окуляр 1 укрепляются на концах тубуса, в котором установ-лена линза Бертрана 2. Тубус и линза Бертрана имеют независимые осевые перемещения.
Рис.24. Общий вид коноскопа
Под линзой Бертрана расположена поляризационная призма-анали-затор 3. На верхней части штатива укреплен поворотный столик 5 для установки исследуемой пластины.
Ниже располагается осветительная система 6, состоящая из двухлин-зового конденсора, поляризатора и зеркала.
Полученную коноскопическую фигуру можно рассматривать только при включенной линзе Бертрана, которая вместе с окуляром составляет микроскоп, сфокусированный на фокальную плоскость объектива.
Фокусировка изображения достигается перемещением линзы Бертрана вдоль тубуса при помощи кремальеры.
Биение интерференционной картины относительно центра поля зрения при вращении столика с пластинкой означает, что нижняя рабочая грань пластинки не перпендикулярна (непараллельна) оптической оси кристалла.
Отчет должен содержать:
PAGE 41
EMBED Word.Picture.8
EMBED Word.Picture.8
EMBED Word.Picture.8
EMBED Word.Picture.8
EMBED Word.Picture.8
EMBED Word.Picture.8
А также другие работы, которые могут Вас заинтересовать | |||
50362. | Основные конфликтологические теории. (К. Маркс, Р. Дарендорф, Л. Козер) | 15.7 KB | |
Ральф Дарендорф в своей «теории конфликта» исходил из того, что в каждом обществе существуют осевые линии социальных конфликтов. Конфликт, по его мнению, рождается из того, что одна группа или один класс сопротивляются «давлению» или господству противоположной им социальной силы. | |||
50363. | Изучение теории погрешностей и кинематики материальной точки | 2.22 MB | |
Экспериментальные точки не должны сливаться друг с другом; Масштабы вдоль осей следует выбирать так чтобы основная часть графика имела наклон близкий к и лежала в средней части между осями; Если на графике необязательно иметь начало координат начало и конец разметки по осям должны соответствовать минимальным и максимальным значениям аргумента и функции; Десятичные множители удобнее отнести к единице измерения тогда деления на Ося будут помечены цифрами 123 и т. На график наносятся все полученные в измерениях точки выносные... | |||