42266

ВОССТАНАВЛИВАЮЩЕЕСЯ НАПРЯЖЕНИЕ НА ПОЛЮСАХ ВЫКЛЮЧАТЕЛЯ

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Эти процессы наблюдаются при трехфазном КЗ однофазном КЗ в сетях с заземленной нейтралью а также при двухфазном КЗ как в сетях высокого так и низкого напряжения. Описание установки Процессы восстановления напряжения моделируются в установке принципиальная схема которой показана на рис. В один полупериод питающего напряжения диод является проводящим и напряжение на нем практически равно нулю в другой – непроводящим. Эти процессы повторяются с частотой питающего напряжения и на экране электронного осциллографа используемого для их...

Русский

2013-10-28

205.5 KB

17 чел.

5. Лабораторная работа

ВОССТАНАВЛИВАЮЩЕЕСЯ НАПРЯЖЕНИЕ НА ПОЛЮСАХ ВЫКЛЮЧАТЕЛЯ

5.1. Предмет исследования

Предметом исследования являются коммутационные процессы в сети питания потребителей (рис. 5.1), на шинах которых за выключателем произошло короткое замыкание (КЗ).

Эти процессы наблюдаются при трехфазном КЗ, однофазном КЗ в сетях с заземленной нейтралью, а также при двухфазном КЗ как в сетях высокого, так и низкого напряжения.

Отключение индуктивных цепей коммутационными аппаратами сопровождается появлением коммутационных перенапряжений, которые могут представлять опасность для электрического оборудования (трансформаторов, генераторов, двигателей, полупроводниковых приборов), если не принять мер по снижению уровня этих перенапряжений. Шунтирование выключателя в процессе отключения активным сопротивлением или емкостью является эффективным способом уменьшения коммутационных перенапряжений.

5.2. Описание установки

Процессы восстановления напряжения моделируются в установке, принципиальная схема которой показана на рис. 5.2. Параметры элементов схемы приведены в таблице 5.1. Для упрощения установки и создания безопасных условий работы напряжение питания выбрано низким (ок. 10 В).

Выключатель Q, на полюсах которого восстанавливается напряжение, моделируется полупроводниковым диодом.

В один полупериод питающего напряжения диод является проводящим и напряжение на нем практически равно нулю, в другой – непроводящим. В переходном процессе вблизи каждого нуля тока после проводящего полупериода на диоде восстанавливается напряжение источника. Эти процессы повторяются с частотой  питающего напряжения и на экране электронного осциллографа, используемого для их регистрации, создается устойчивое изображение процесса восстановления напряжения.

Схема испытательной установки при разомкнутом выключателе SA представляет собой эквивалентную однофазную цепь, моделирующую одночастотный процесс восстановления напряжения, что соответствует условию КЗ на сборных шинах генератора (см. рис. 5.1). Эквивалентные индуктивности и активные сопротивления моделируются суммой индуктивного и активного сопротивлений элементов L1 и L2, а эквивалентная емкость генератора и соединительных проводов моделируется емкостями C1-C4, включаемыми ступенчато с помощью переключателя SA1.

Влияние сопротивления шунтирующего резистора на восстанавливающееся напряжение исследуется ступенчатым включением с помощью переключателя SA2 резисторов R1-R4 и R. Резистор R имеет плавную регулировку значения сопротивления в диапазоне от 0 до 2200 Ом.

Питание установки осуществляется через выключатель SA5. Наличие тока в цепи контролируется амперметром PA4. Значения С1-С4, R1-R4 и R указаны на стенде.

Рис. 5.1. Схема питания потребителей

Рис. 5.2. Схема испытательной установки

Таблица 5.1.

Параметры элементов схемы

1

2

3

4

5

SA1, С, мФ

0,1

0,25

1,0

2,0

-

SA2, R, кОм

50

15

5

1

2,2

Рис. 5.3. Схема замещения для расчета восстанавливающегося  напряжения для схемы рис. 5.1.

Рис. 5.4. Процесс восстановления напряжения на полюсах выключателя в схеме рис.5.1.

5.3. Задание на работу и
методические указания по ее выполнению

После включения SF1 и SF5 с помощью переключателя SA6, установить на световом индикаторе HG номер 2, соответствующий данной лабораторной работе.

5.3.1. Для Rш = ∞ экспериментально (с экрана осциллографа) определить зависимости собственной частоты, максимальной амплитуды восстанавливающегося напряжения и средней скорости восстановления напряжения от значения шунтирующей емкости.

Отключить выключатель SA, а переключатель SA2 поставить в положение, соответствующее Rш = ∞.

Установить на экране осциллографа непрерывную кривую восстановления напряжения на выключателе, аналогичную рис. 5.4. Причем зафиксировать начальный участок роста восстанавливающегося напряжения. Записать масштаб по времени и по напряжению (с учетом делителя напряжения).

Изменяя переключателем SA1 величину шунтирующей емкости, измерить с помощью осциллографа требуемые параметры восстанавливающегося напряжения одночастотного колебательного контура.

5.3.2. По результатам эксперимента п. 5.3.1 рассчитать суммарную индуктивность L=L1+L2 эквивалентной схемы замещения (рис. 5.3), как среднюю величину из четырех значений, полученных для различных шунтирующих емкостей.

Для проведения необходимых расчетов воспользуемся схемой замещения, которая для первой рвущей фазы выключателя в сетях (см. рис. 5.1.) показана на рис. 5.3 [3]. Здесь L  собственная индуктивность фазы генератора; C  емкость обмотки генератора на землю; R  собственное активное сопротивление генератора; Rш  активное сопротивление, шунтирующее промежуток выключателя.

При строгом аналитическом расчете должно учитываться сопротивление дугового столба, но закон его изменения очень сложен и, поэтому влиянием сопротивления дугового столба пренебрегаем. Поскольку активное сопротивление R элементов цепи мало, при Rш = ∞ собственная частота восстанавливающегося напряжения [3,9]:

Отсюда определяется индуктивность схемы замещения.

В общем случае периодический процесс восстановления напряжения описывается с достаточной точностью уравнением:

,

где Uo  напряжение генератора, соответствующее моменту перехода тока через нуль (возвращающееся напряжение); a - показатель затухания,

ωo  собственная угловая частота контура;

Изменение напряжения и тока в процессе гашения дуги показано на рис. 5.4. Так как при КЗ ток определяется главным образом индуктивностью, то он отстает по фазе от напряжения на угол φ=90o.

5.3.3. Построить зависимости, полученные в п. 5.3.1. на графиках и объяснить полученные результаты.

Строятся зависимости: fo=f(C); UВ max f(C); (dUВ/dt)срf(С).

Здесь: UВ max - максимальное значение восстанавливающегося напряжения; (dUВ/dt)ср - средняя скорость восстановления напряжения:

.

5.3.4. Для двух значений шунтирующих емкостей, заданных преподавателем, экспериментально определить влияние шунтирующего сопротивления на частоту собственных колебаний, максимальную амплитуду восстанавливающегося напряжения и среднюю скорость восстановления напряжения.

Опыты проводить при фиксированных значениях шунтирующей емкости. Изменяя с помощью SA2 величину шунтирующего сопротивления, снять требуемые зависимости.

5.3.5. Для заданных в п. 5.3.4 условий определить значение критического шунтирующего сопротивления.

Поскольку величина активного сопротивления элементов цепи мала, при наличии шунтирующего сопротивления переход периодического процесса в апериодический осуществляется при выполнении условия

При соблюдении равенства имеет место Rкр.

5.3.6. При условиях п. 5.3.4 экспериментально методом подбора получить критический режим. Сравнить экспериментальные и расчетные величины критического сопротивления.

Изменяя с помощью SA2 (ступенчато) и R (плавно) величину шунтирующего сопротивления, добиваемся перехода процесса восстановления напряжения из периодического в апериодический.

5.4. Контрольные вопросы

1. Что такое восстанавливающееся напряжение на коммутирующем элементе аппарата?

2. Что такое восстанавливающаяся прочность коммутирующего элемента аппарата?

3. Сформулируйте условие отключения электрической цепи переменного тока.

4. Как связаны параметры схемы замещения с параметрами схемы реального объекта?

5. Что и как влияет на процесс восстановления напряжения на контактах выключателя?

6. Каково назначение конденсаторов, включаемых параллельно коммутирующему элементу выключателя?

7. Сформулируйте условие перехода колебательного процесса восстановления напряжения в апериодический.

8. Каково влияние угла сдвига фаз (характера нагрузки) на процесс восстановления напряжения?

9. Как с помощью осциллограммы процесса восстановления напряжения определить активное сопротивление в одночастотной схеме замещения?

10. Как по результатам эксперимента оценивается частота восстанавливающегося напряжения?

11. Как по результатам эксперимента оценивается средняя скорость восстанавливающегося напряжения?


 

А также другие работы, которые могут Вас заинтересовать

30274. Основные методы (школы) литературоведения. Культурно-исторический метод 59 KB
  Основные методы школы литературоведения. Виднейший литературовед промышленной буржуазии Ипполит Тэн не случайно оказался связанным с целым рядом теоретиков работавших в самых различных областях науки. Автор Истории английской литры не отрицал огромного влияния на него социолога Бокля История английской цивилизации с его теорией расы и физической среды. Но больше всего на взглядах Тэна отразилось учение о происхождении видов Дарвина английского естествоиспытателя крого Тэн сочувственно цитировал в введении к указанному выше труду...
30275. Основные методы (школы) литературоведения. Сравнительно-исторический метод (компаративизм) 36 KB
  Основные методы школы литературоведения. Сравнительноисторический метод компаративизм Докторская диссертация знаменитого русского литературоведа академика А. Другой попыткой буржуазного литературоведения закрепиться на позитивистских позициях был сравнительноисторический компаративный метод. Практикуемый ими метод приводил их к подбору аналогичных сюжетов в литом творчестве соседних стран толкая их на исследование поэтической продукции прошлого.
30276. Основные методы (школы) литературоведения. Филологический метод 31 KB
  Анализы памятников слова практиковались уже в глубокой древности; таковы в Греции первые изучения Гомера в Египте деятельность таких александрийских филологов как Аристарх и Ликофрон в Риме критическая обработка текстов Вергилия Валерием Проббом и т. В огромном большинстве случаев филологизм древности вызван был к жизни научновспомогательными соображениями заботой о проведении в наличность древнейших и популярнейших произведений поэтического творчества и о сохранении их от гибели порчи и всяких искажений столь возможных в те...
30277. Основные методы (школы) литературоведения. Биографический метод (Ш.-О.Сент-Бёв) 36.5 KB
  На примере виднейшего критика французского романтизма СентБёва особенно отчетливо вырисовываются эти черты нового литературоведческого метода. В противоположность Буало и его последователям подчинявшим индивидуальное развитие художника множеству регламентирующих указаний СентБёв эмансипирует личность. Мелкобуржуазного романтика СентБёва интересует прежде всего творческая индивидуальность писателя. Биографический охват творящей личности сыграл в глазах СентБёва доминирующую роль в литой науке.