42307

Дослідження розімкнутої лінійної системи за допомогою середовища MATLAВ

Лабораторная работа

Информатика, кибернетика и программирование

Він повинен включати назва предмета номер і назва лабораторної роботи прізвище та ініціали авторів номер групи прізвище та ініціали викладача номер варіанта короткий опис досліджуваної системи результати виконання всіх пунктів інструкції які виділені сірим фоном див. Визначте смугу пропускання системи найменшу частоту на якій АЧХ стає менше ніж дБ. Побудуйте модель системи в просторі стану.

Украинкский

2013-10-29

123 KB

1 чел.

Лабораторна робота № 2


Дослідження розімкнутої лінійної системи


Мета роботи
• освоєння методів аналізу одновимірної лінійної безперервної системи за допомогою середовища MATLAB
Завдання роботи
• запровадити модель системи у вигляді передавальної функції
• побудувати еквівалентні моделі в просторі станів і в формі «нулі-полюси»
• визначити коефіцієнт посилення в сталому режимі і смугу пропускання системи
• навчитися будувати імпульсну і перехідну характеристики, карту розташування нулів і полюсів, частотну характеристику
• навчитися використовувати вікно LTIViewer для побудови різних характеристик
• навчитися будувати процеси на виході лінійної системи при довільному вхідному сигналі
Оформлення звіту
Звіт з лабораторної роботи виконується у вигляді зв'язного (читається) тексту у файлі формату Microsoft Word (шрифт основного тексту Times New Roman, 12 пунктів, через 1,5 інтервалу, вирівнювання по ширині). Він повинен включати
• назва предмета, номер і назва лабораторної роботи
• прізвище та ініціали авторів, номер групи
• прізвище та ініціали викладача
• номер варіанта
• короткий опис досліджуваної системи
• результати виконання всіх пунктів інструкції, які виділені сірим фоном (див. нижче): результати обчислень, графіки, відповіді на запитання.
При складанні звіту рекомендується копіювати необхідну інформацію через буфер обміну з робочого вікна середовища MATLAB. Для цих даних використовуйте шрифт Courier New, в якому ширина всіх символів однакова.

Інструкція з виконання роботи
Основна частина команд вводиться в командному вікні середовища MATLAB. Команди, які треба застосовувати в інших вікнах, позначені іконками відповідних програм.

Етап виконання завдання
1. Очистіть робочий простір MATLAB (пам'ять).
clear all
2. Очистіть вікно MATLAB.
clc
3. Подивіться коротку довідку по команді tf.
help tf
4. Визначте адресу файлу, який виконує цю команду.
which('tf')
5. Введіть передавальну функцію

як об'єкт tf.  n = [n2 n1 n0]

d = [1 d2 d1 d0]

f = tf ( n, d )



6. Перевірте, як отримати з цього об'єкта чисельник і знаменник передавальної функції.
[n1,d1] = tfdata ( f, 'v' )
7. Знайдіть нулі і полюси передавальної функції.
 z = zero ( f )

p = pole ( f )



8. Знайдіть коефіцієнт посилення ланки в сталому режимі.
k = dcgain ( f )

9. Визначте смугу пропускання системи (найменшу частоту, на якій АЧХ стає менше, ніж дБ).
b = bandwidth ( f )

10. Побудуйте модель системи в просторі стану.
f_ss = ss ( f )

11. Зробіть так, щоб коефіцієнт прямої передачі ланки дорівнював 1.
f_ss.d = 1
12. Знайдіть новий коефіцієнт посилення ланки в сталому режимі.

13. Як пов'язані коефіцієнти і? Чому?

14. Побудуйте модель вихідної системи у формі «нулі-полюси».
f_zp = zpk ( f )
15. Перевірте, які змінні є в робочому просторі.
who или whos

(в чому різниця?)
16. Побудуйте на графіку розташування нулів і полюсів системи.
pzmap ( f )
17. Визначте коефіцієнти демпфування і власні частоти для всіх елементарних ланок (першого і другого порядку).
[wc,ksi,p] = damp ( f )
18. Відкрийте модуль LTIViewer.
ltiview
19. Завантажте модель f.
FileImport
20. Побудуйте імпульсну характеристику (вагову функцію) цієї системи.
 

ПКМ – Plot Types - Impulse
21. Завантажте модель f_ss.
FileImport
22. Перевірте, чи побудована імпульсна характеристика другої системи?
ПКМ – Systems
23. Вимкніть систему f. Чому однакові побудовані імпульсні характеристики різних систем?
ПКМ – Systems
24. Підключіть обидві системи.
25. Побудуйте перехідні характеристики систем.
 

ПКМ – Plot Types – Step
26. Зробіть, щоб на графіку для кожної функції були відзначені:
• максимум
• час перехідного процесу
• час наростання (від 10% до 90% сталого значення)
• стале значення

 

ПКМ – Characteristics:

Peak Response

Settling Time

Rise Time

Steady State


27. Клацаючи мишею по мітках-гурткам, виведіть на екран рамки з чисельними значеннями цих параметрів і розташуйте їх так, щоб всі числа були видні.
28. Експортуйте побудований графік в окреме вікно.
 

File – Print to Figure
29. Скопіюйте графік у буфер обміну у форматі векторного метафайлу.
print -dmeta
30. Вставте графік з буфера обміну в звіт (Microsoft Word).  
ПКМ - Вставить
31. Закрийте вікно LTIViewer.
32. Створіть масив частот для побудови частотної характеристики (100 точок в інтервалі від до з рівномірним розподілом на логарифмічною шкалою).
w = logspace(-1, 2, 100);
33. Розрахуйте частотну характеристику вихідної системи ...
r = freqresp ( f, w );

r = r(:);
34. ... І побудуйте її на осях з логарифмічним масштабом по осі абсцис.
semilogx ( w, abs(r) )
35. Скопіюйте графік у буфер обміну у форматі векторного метафайлу.
print -dmeta
36. Вставте графік з буфера обміну в звіт (Microsoft Word). Поясніть, де на графіку можна знайти коефіцієнт посилення в статичному режимі і як визначити смугу пропускання системи.  
ПКМ – Вставить
37. Закрийте всі зайві вікна, окрім командного вікна MATLAB.
38. Побудуйте сигнал, що імітує прямокутні імпульси одиничної амплітуди з періодом 4 секунди (всього 5 імпульсів).
[u,t] = gensig('square',4);
39. Виконайте моделювання та побудуйте на графіку сигнал виходу системи f при цьому вході.
lsim (f, u, t)
40. Скопіюйте графік у буфер обміну у форматі векторного метафайлу.
print -dmeta
41. Вставте графік з буфера обміну в звіт (Microsoft Word).  
ПКМ – Вставить

Таблиця коефіцієнтів

Варіант

  1.  

1.0

1.10

0.100  

 3.0000  

 3.1600

 1.2000

  1.  

1.1

1.54

0.495  

 2.8000  

 2.9200

 1.2000

  1.  

1.2

1.08

0.096  

 2.3727  

 2.2264

 0.9091

  1.  

1.3

1.04

0.091  

 2.1909  

 2.0264

 0.9091

  1.  

1.4

-1.54

0.252  

 1.8333  

 1.5278

 0.6944

  1.  

1.5

-0.90

-0.240  

 1.6667  

 1.3611

 0.6944

  1.  

1.6

0.80

-0.224  

 1.3286  

 0.8959

 0.4592

  1.  

1.7

1.36

0.204  

 1.1857  

 0.7673

 0.4592

  1.  

1.8

-1.98

0.432  

 1.2000  

 0.7644

 0.3556

  1.  

1.9

-0.76

-0.399  

 1.3333  

 0.8711

 0.3556

  1.  

2.0

0.60

-0.360  

 1.2000  

 0.7406

 0.2734

  1.  

2.1

1.68

0.315  

 1.3250  

 0.8281

 0.2734

  1.  

2.2

-2.42

0.616  

 1.3059  

 0.7696

 0.2076

  1.  

2.3

-0.46

-0.552  

 1.4235  

 0.8401

 0.2076

  1.  

2.4

0.24

-0.480  

 1.3889  

 0.7531

 0.1543

  1.  

2.5

2.25

0.500  

 1.5000  

 0.8086

 0.1543

  1.  

2.6

0.26

-0.780  

 1.2421  

 0.6139

 0.1108

  1.  

2.7

-0.27

-0.810  

 1.1368  

 0.5717

 0.1108

  1.  

2.8

0.28

-0.840  

 0.8000  

 0.3700

 0.0500

  1.  

2.9

3.19

0.870  

 0.7000  

 0.3500

 0.0500


 

А также другие работы, которые могут Вас заинтересовать

75373. ЭФФЕКТ САНЬЯКА 371 KB
  Эффект Саньяка является следствием релятивистского закона сложения скоростей: линейной скорости вращения интерферометра и фазовых скоростей встречных волн. В случае использования встречных электромагнитных волн с длиной волны  различие времен распространения Т приводит к появлению разности фаз : . 2 Если все элементы интерферометра расположены на вращающейся платформе разность фаз встречных волн не зависит от показателя преломления и дисперсии среды в которой они распространяются....
75374. .КОЛЬЦЕВЫЕ ЛАЗЕРНЫЕ ГИРОСКОПЫ 3.27 MB
  Чтобы измерять малые угловые скорости, используют частотную подставку. С помощью виброподвеса 10 возбуждаются угловые колебания кольцевого лазера относительно корпуса ЛГ.
75375. ЛАЗЕРНЫЕ ДОПЛЕРОВСКИЕ ИЗМЕРИТЕЛИ СКОРОСТИ 58.5 KB
  В соответствии с 2 относительная методическая погрешность измерения путевой скорости по разности частот. Принципиальная схема лазерного доплеровского измерителя скорости ЛДИС с опорным лучом Расщепитель пучка Лазерный пучок Рассеянное излучение частота Требования к лазеру: Минимальное поглощение и рассеяние излучения лазера в атмосфере включая...
75376. ЛАЗЕРНЫЕ ДАЛЬНОМЕРЫ 94.5 KB
  Импульсный метод – измерение времени распространения короткого импульса лазерного излучения до объекта и обратно. Фазовый метод – измерение разности фаз у колебаний мощности модулированного лазерного излучения на выходе из источника и возвратившегося после отражения
75377. ПРИНЦИПЫ ОПТИЧЕСКОЙ БЛИЖНЕПОЛЬНОЙ МИКРОСКОПИИ 185 KB
  Соотношение неопределенностей Неопределенность координаты фотона не может быть меньше чем длина волны. Если декремент затухания сделать большим то после подстановки в 1 получается следующий результат: неопределенность координаты намного меньше длины волны.
75378. ПРИНЦИПЫ ЗАПИСИ ИНФОРМАЦИИ НА КОМПАКТ-ДИСКЕ И ЕЕ СЧИТЫВАНИЯ 281 KB
  Этапы производства оптических дисков фотолитография процесс изготовления штампа диска. Считывание информации с поверхности диска Принцип считывания информации: регистрация изменения мощности отражённого света. Различие между дисками только для чтения и дисками однократной многократной записи заключается в способе формирования питов.
75379. Преимущества оптического волокна как среды для передачи информации 225.5 KB
  Полезная ширина полосы одиночно излученного светового импульса определяется импульсной передаточной функцией рассматриваемого оптического волокна ОВ. Учитывая что оптическая ширина полосы волокна определяется импульсной передаточной функцией этого волокна можно показать что измеренная на уровне 3 дБ по мощности оптическая ширина полосы Во оценивается с помощью показателя полная ширина полосы на уровне половины от максимума...
75380. Затухание оптического излучения в волокне 167.5 KB
  Существовало две глобальных проблемы при разработке оптических систем передачи данных: 1) источник света и 2) носитель сигнала. Первая разрешилась с изобретением лазеров в 1960 году, вторая - с появлением высококачественных оптических кабелей в 1970 году
75381. ХРОМАТИЧЕСКАЯ ДИСПЕРСИЯ В ОДНОМОДОВОМ ВОЛОКНЕ И УШИРЕНИЕ ПЕРЕДАВАЕМОГО ИМПУЛЬСА 113 KB
  В полосе прозрачности 850 нм более длинные волны распространяются с большей скоростью чем короткие например излучение на длине волны 865 нм распространяется в кварцевом стекле с большей скоростью чем излучение на длине волны 835 нм. Совсем наоборот происходит в полосе прозрачности 1550 нм: более короткие длины волн распространяются с большими скоростями чем более длинные излучение с длиной волны 1535 нм распространяется быстрее чем с длиной волны 1560 нм. Спектр оптического сигнала имеет конечную ширину ...