42336

Планирование заданий в многопроцессорных системах

Лабораторная работа

Информатика, кибернетика и программирование

Методические указания В компьютерной системе 5 процессоров. Все процессоры разные по производительности и набору команд. Каждая задача задается следующим образом: Zперечень процессоров сложность количество операций.

Русский

2013-10-29

32 KB

10 чел.

3

КОМПЛЕКС ЛАБОРАТОРНЫХ РАБОТ  №  1-4

Тема: «Планирование заданий в многопроцессорных системах»

Цель работы: изучение принципов распределения ресурсов в многопроцессорных системах.

Методические  указания

В компьютерной системе 5 процессоров. Все процессоры разные по производительности и набору команд. В систему каждую миллисекунду (мс) поступают с определенной вероятностью задачи.

Каждая задача задается следующим образом: Z(перечень процессоров, сложность (количество операций)). Перечень процессоров – номера процессоров, на которых может быть реализована данная задача. Сложность задач выбирается случайно, исходя из того, что задача должна выполняться на самом «слабом» процессоре не менее  10 мс и не более 200 мс. Задачи устанавливаются в очередь. Все задачи имеют одинаковый приоритет.

Каждый процессор задается при помощи параметра «мощность» или «скорость обработки» - n операций в миллисекунду. Не смотря на то, что процессоры отличаются друг от друга, будем считать, что единица измерения одинакова и адекватна нашему заданию.

Распределение ресурсов в системе может быть произведено по трем схемам:

  1.  FIFO (First In First Out) – самый простой алгоритм распределения задач. Его недостаток – низкая производительность из-за того, к примеру, что две (или более) последовательно идущие задачи, которые могут быть реализованы только на одном процессоре, могут заставить простаивать все остальные процессоры.
  2.  С отдельным процессором-планировщиком. В этом случае распределением ресурсов в системе занимается отдельный процессор, который не принимает участия в вычислениях. Так как алгоритм планирования не очень сложен, то целесообразно для этих целей выделить самый «слабый» (самый низкопроизводительный) процессор. Однако, в этом случае система реально «теряет» один процессор с точки зрения производительности и части задач, ориентированных на этот процессор. Чтобы этого избежать, необходимо докупить и добавить в систему дополнительный процессор-планировщик. Но это негативно отразится на надежности системы, т.к. выход его из строя приведет к отказу системы в целом.
  3.  Наиболее целесообразным представляется возложение функций планирования на самый «мощный» (самый высоко-производительный) процессор, периодически прерывающий вычисления для управления очередью. В этом случае считать, что время для управления очередью составляет 4 мс.

В качестве отчета по лабораторной работе следует подать 4 набора показателей работы системы:

а) по п. 1);

б) по п. 2);

в) по п. 3), учитывая, что время работы процессора над задачами – 20 мс, а время планирования – 4 мс.

г) по п. 3), но время работы над задачами определить самостоятельно, исходя из оптимальной производительности системы.

Показатели работы системы:

- количество реализованных задач (выполненных операций) за 10с;

- количество операций, выполненных системой за 10с.

Примечание: необходимо брать среднее арифметическое количества реализованных задач (операций) для пяти испытаний по каждому из вариантов а), б), в), г).

- КПД системы;

- КПД’ системы.

КПД - соотношение числа выполненных системой за 10с операций к максимально возможному количеству операций (сумме производительности всех процессоров за 10с).

КПД’ - соотношение числа выполненных системой за 10с операций к сумме реальной вычислительной производительности процессоров за 10с. Здесь необходимо учитывать то, что в пункте б) не все процессоры выполняют вычислительную работу, а пунктах в) и г) самый мощный процессор работает не все время.

Очевидно, что для пункта а) КПД=КПД’.

Программный интерфейс должен предоставлять возможность преподавателю задавать:

а) производительности всех пяти процессоров;

б) вероятности возникновения задачи в текущую миллисекунду;

в) границы сложности задач.


 

А также другие работы, которые могут Вас заинтересовать

11806. Изучение процесса вулканизации 481.5 KB
  Лабораторная работа № Изучение процесса вулканизации Цель работы Изучить процесс вулканизации определить температурный коэффициент вулканизации по физикомеханическим показателям и оптимальное время вулканизации. Теоретическая часть Вулканизация ...
11807. ВИЗНАЧЕННЯ ГРАНУЛОМЕТРИЧНОГО СКЛАДУ ГРУНТУ (ПОЛЬОВИЙ МЕТОД) 66.5 KB
  ЛАБОРАТОРНА РОБОТА ВИЗНАЧЕННЯ ГРАНУЛОМЕТРИЧНОГО СКЛАДУ ГРУНТУ ПОЛЬОВИЙ МЕТОД Гранулометричним складом ґрунту називають відносну місткість в них частинок різної крупності. Гранулометричний склад ґрунту дозволяє визначати будівельні властивості ґрунту. Визначаю...
11808. Изготовление резиновой смеси 210 KB
  Лабораторная работа № Изготовление резиновой смеси Цели работы Изготовление резиновой смеси по имеющемуся рецепту. Теоретическая часть Изготовление резиновых смесей является одним из основных процессов резинового производства от качественного провед...
11809. Процесс каландрования резиновых смесей 384.5 KB
  Лабораторная работа № Процесс каландрования резиновых смесей Цели работы Определение влияния типа наполнителя и размера калибрующего зазора на усадку. Теоретическая часть Каландрование это процесс непрерывного формовании разогретой резиновой смеси
11810. ВИЗНАЧЕННЯ ТИПУ ГЛИНИСТОГО ГРУНТУ 236 KB
  ВИЗНАЧЕННЯ ТИПУ ГЛИНИСТОГО ГРУНТУ Глинисті ґрунти складаються з дуже маленьких часточок менше 0005 мм які зазвичай мають лускоподібну форму. На відміну від піщаних ґрунтів глини мають велику поверхню часточок які вбирають вологу. Глинисті ґрунти мають властивість
11811. ИССЛЕДОВАНИЕ КВАНТОВОЙ ПРИРОДЫ СВЕТА 142.5 KB
  Лабораторная работа 1 по курсу КСЕ ИССЛЕДОВАНИЕ КВАНТОВОЙ ПРИРОДЫ СВЕТА Цель работы: Исследовать квантовые свойства света и построить график зависимости фототока от напряжения. Приборы и принадлежности: источник питания ИПС106 стенд с объектами исследования С3...
11812. Определение параметров солнечного ветра и его влияния на магнитосферу Земли 973.5 KB
  Лабораторная работа № 2 по курсу КСЕ Определение параметров солнечного ветра и его влияния на магнитосферу Земли Цель работы: ознакомиться со структурой межпланетного магнитного поля и геомагнитосферы; определить радиальную скорость распространения выб
11813. ВИЗНАЧЕННЯ КУТА ПРИРОДНЬОГО УХИЛУ ГРУНТУ 58 KB
  ВИЗНАЧЕННЯ КУТА ПРИРОДНЬОГО УХИЛУ ГРУНТУ Кутом природного ухилу α називають такий максимальний кут між горизонтом і поверхнею вільного ґрунту при якому ґрунт ще зберігає рівновагу. Зчеплення α для сухих ґрунтів в рихлому стані майже співпадає з кутом внутрішнього ...
11814. Определение пластичности каучука и резиновых смесей на пластомере 153.5 KB
  Лабораторная работа № Определение пластичности каучука и резиновых смесей на пластомере Суть метода Приложение постоянного груза к образцу и измерение высот до нагрузки после нагрузки и после отдыха. Краткая теория Пластичность способность мате