42340

ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ СТЕКЛА С ПОМОЩЬЮ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

Лабораторная работа

Физика

Электронная теория дисперсии света дает следующую зависимость показателя преломления среды от частоты световых волн: 1 где N – число молекул в единице объема среды круговая частота собственных колебаний электронов круговая частота световой волны e и m – заряд и масса электрона. Дисперсией электромагнитных волн света называется зависимость показателя преломления среды n от их частоты . В данной лабораторной...

Русский

2013-10-29

183 KB

17 чел.

Лабораторная работа 7.1.

ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ СТЕКЛА С ПОМОЩЬЮ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ.

Библиографический список

1. Трофимова Т. И. Курс физики. М.: Высшая школа, 1985.

2. Годжаев М. Н. Оптика. М.: Высшая школа, 1977.

3. Сивухин Д. В. Общий курс физики. Оптика. М.: Наука, 1980.

Цель работы: изучение резонансного взаимодействия световой волны лазера с электронами вещества.

Приборы и оборудование: плоскопараллельная стеклянная пластина, лазер ЛГН-109, экран с микроскопическим объективом.

Введение

С точки зрения атомистических представлений дисперсия света возникает в результате вынужденных колебаний электронов вещества под действием переменного поля электромагнитной волны.

Электронная теория дисперсии света дает следующую зависимость показателя преломления среды от частоты световых волн:

,                         (1)

где N – число молекул в единице объема среды,
- круговая частота собственных колебаний электронов,  - круговая частота световой волны,
e и m – заряд и масса электрона.

Из соотношения (1) следует определение дисперсии света.

Дисперсией электромагнитных волн, света называется зависимость показателя преломления среды n от их частоты . В данной лабораторной работе определяется показатель преломления стекла из наблюдений интерференции лазерного луча с длиной волны 0  630 нм. Высокая степень когерентности лазерного излучения позволяет осуществить явления интерференции и дифракции со значительно меньшими сложностями, чем с обычными источниками света.

Описание метода и экспериментальной установки

Плоскопараллельная пластина ППП освещается расходящимся пучком, который получают из лазерного луча ЛЛ с помощью микроскопического объектива МО. Объектив МО установлен так, что его задний фокус совпадает с плоскостью круглого экрана Э. В центре экрана, напротив луча, имеется небольшое отверстие, размеры которого при использовании лазерного луча несущественны (рис. 1). Удобно пользоваться отверстием диаметром 2-6 мм. Световые лучи расходящегося пучка, отраженные от передней и задней поверхностей пластинки, интерферируют и дают на экране Э интерференционную картину в виде концентрических светлых и темных колец.

Интерференционная картина создаётся на экране, в плоскости которого находится точечный источник света S. Интерферируют лучи 1 и 2 от этого источника, отражающиеся от ближней и дальней поверхностей плоскопараллельной стеклянной пластины, и сходящиеся в точку В на экране, как показано на рис. 2.

Пластина толщины d с показателем преломления n расположена параллельно экрану на расстоянии l от него. Как видно из рис. 2, оптические длины путей для лучей 1 и 2, отражающихся от различных поверхностей пластины, равны соответственно:

 (2)

Для малых углов ,  и имеем:

 (3)

Поэтому оптическая разность хода рассматриваемых лучей равна:

 (4)

Дополнительная разность хода 0/2 возникает при отражении луча 1 от оптически более плотной среды в точке А. Так как лучи 1 и 2 пересекаются в точке В экрана на расстоянии r от источника S, то

  (5)

На границе стекла и воздуха выполняется закон преломления света: sin  nsin или (для малых углов):
  /n.

Если толщина пластинки d мала по сравнению с l (т.е.
d/l  1), то из (5) находим:

Подставляя эти выражения для углов в (4), имеем:

Полосы интерференционной картины на экране имеют вид колец. Радиусы rк тёмных колец определяются условием интерференционных минимумов:

.  (6)

Отсюда находим:

,   (7)

где k – целые числа, n – показатель преломления стекла;
0 - длина волны лазерного излучения (даётся в паспорте лазера); d – толщина пластины; l – расстояние от пластины до экрана.

Соотношение (7) выполняется при условии  и .

Из формулы (7) видно, что  линейно зависит от порядка интерференции k. Следовательно,  линейно зависит и от номера кольца N. Если построить график зависимости от N
(рис. 3), то тангенс угла наклона этого графика позволяет определить коэффициент при k в формуле (7):

.    (8)

Тогда показатель преломления n выразится следующей формулой:

    (9)

Из формулы (8) видно, что определяемая величина n зависит не от номера измеряемого кольца, а от разности номеров . Поэтому нет необходимости отыскивать на экране кольцо, соответствующее N = 1. Кольца могут нумероваться последовательно в порядке уменьшения радиуса, причем первое кольцо выбирается произвольно.

Порядок выполнения работы

При правильной установке пластинки и экрана на последнем появится система интерференционных колец, центры которых совпадают с центром микрообъектива. Небольшими перемещениями экрана и объектива получить чёткую картину колец.

  1.  Пронумеровать на экране темные кольца, положив номер наибольшего из них N = 1, а следующих, по мере убывания радиуса: N = 2, 3, 4, 5 и так далее.
  2.  Измерить радиусы первых 6-7 колец с помощью двух взаимно перпендикулярных шкал, нанесенных на поверхности экрана. Для каждого кольца определяются четыре значения радиуса.
  3.  Найти среднее значение радиуса каждого кольца  и его квадрат .
  4.  Построить график зависимости  от номера кольца N. Примерный вид графика приведен на рис. 3.
  5.  По графику (рис. 3), найти отношение  и по формуле (9) рассчитать показатель преломления n.
  6.  Получить путем дифференцирования соотношения (9) формулу абсолютной и относительной погрешности для n.
  7.  Результаты вычислений записать в виде:

; .

Контрольные вопросы

  1.  Чем отличается излучение лазера от обычного света?
  2.  Что такое дисперсия электромагнитных волн?
  3.  Что такое нормальная и аномальная дисперсия?
  4.  Как осуществляется взаимодействие световой волны с электронами вещества?
  5.  Каково физическое содержание показателя преломления вещества?
  6.  Луч света падает из воздуха в воду (n = 1,3). Угол падения равен 10. Оценить угол преломления (при расчете считать угол малым).
  7.  Луч света падает из воды (n = 1,3) в воздух. Угол падения равен 30. Найти синус угла преломления.
  8.  Чему равен угол полного внутреннего отражения и в чем его физический смысл?
  9.  Луч падает перпендикулярно тонкой пленке толщиной d, имеющей показатель преломления n. Чему равна разность фаз двух лучей, отраженных от верхней и нижней поверхностей пленки? Длина волны света в воздухе λ.
  10.  Какие источники света можно назвать когерентными?
  11.  Почему излучение лазера называется когерентным?
  12.  Каковы условия максимума и минимума при интерференции волн?
  13.  Для опыта Юнга (интерференция на двух щелях) указать положение первого максимума и записать условие следующего максимума через длину волны, расстояние от экрана до щели l и расстояние между щелями d (в опыте Юнга d<<l).
  14.  Почему интерференционная картина в исследуемом случае имеет вид колец?
  15.  Что произойдёт с интерференционной картиной при увеличении расстояния до пластины? При увеличении показателя преломления стекла? При уменьшении толщины пластины?
  16.  Получить выражения для радиусов светлых колец, наблюдаемых на экране в исследуемом случае.

PAGE  6


Рис. 1. Схема установки

Э

EMBED Equation.3  

EMBED Equation.3  

ЛЛ

N

Рис. 3. График зависимости  от номера кольца N

В

А

С

Э

S

l

n

d

r

2

S2

S1

1

2

Рис. 2


 

А также другие работы, которые могут Вас заинтересовать

11897. Анализ очищенного рассола для производства хлора и каустической соды 138.5 KB
  Лабораторная работа №203 Анализ очищенного рассола для производства хлора и каустической соды Краткое теоретическое введение: Общая характеристика метода. В основе потенциометрии лежит зависимость равновесного электродного потенциала от активности концент
11898. Кулонометрическое титрование кислот 154.5 KB
  Лабораторная работа №211 Кулонометрическое титрование кислот Краткое теоретическое введение: Кулонометрия объединяет методы анализа основанные на измерении количества электричества израсходованного на электрохимические реакции приводящие к количественному ...
11899. Определение жидких хлорметанов в их смеси 295 KB
  Лабораторная работа №301 Определение жидких хлорметанов в их смеси. Краткое теоретическое введение: Достоинства метода газожидкостной хроматографии ГЖХ и газовой хроматографии в целом: 1 высокая разделительная способность и экспрессность процесса; 2 возможнос
11900. Определение СН3СООН, СН3СООNa, NaCl в их смеси 402 KB
  Лабораторная работа №304 Определение СН3СООН СН3СООNa NaCl в их смеси Краткое теоретическое введение: Общая характеристика метода Ионообменная хроматография метод разделения смесей основанный на распределении компонентов смеси между раствором и ионообменником...
11901. Определение аминокислот в их смеси 289 KB
  Лабораторная работа №309 Определение аминокислот в их смеси. Краткое теоретическое введение: Общая характеристика метода Создание метода бумажной хроматографии в 1944 г. значительно расширило возможности разделения идентификации и количественного определен...
11902. Определение арсеназо 1 и голубого декстрана в их смеси 229.5 KB
  Лабораторная работа №312 Определение арсеназо 1 и голубого декстрана в их смеси. Краткое теоретическое введение: Общая характеристика метода Гельхроматография или гельпроникающая или эксклюзионная хроматография является одним из вариантов жидкостной хромато...
11903. Балки и фермы. Главная Центроидальная Система координат 1.47 MB
  Методические указания по выполнению лабораторной работы №4 1. Балки и фермы В этой лабораторной работе рассматриваются: Идеализации Балочные элементы Система координат балки Действующая система координат балки Система координат формы...
11904. Лабораторные работы по физике 2.64 MB
  Основные правила работы в лабораториях кафедры прикладной физики 1. На каждое лабораторное занятие студенты должны приносить с собой: а лабораторный журнал тетрадь в клетку не менее 48 листов; б несколько листов миллиметровой бумаги формата А4; в клей для бумаги
11905. ИЗМЕРЕНИЕ УСКОРЕНИЯ СВОБОДНОГО ПАДЕНИЯ С ПОМОЩЬЮ МАШИНЫ АТВУДА 159.5 KB
  Лабораторная работа № 3 ИЗМЕРЕНИЕ УСКОРЕНИЯ СВОБОДНОГО ПАДЕНИЯ С ПОМОЩЬЮ МАШИНЫ АТВУДА Цель работы: Изучение динамики поступательного движения связанной системы тел с учетом сил трения. Приборы и принадлежности: машина Атвуда смонтированная на лабораторном мод...