42365

Двумерные графики. Дифференцирование. Интегрирование функции одной переменной. Интегрирование функции многих переменных. Действия с матрицами

Лабораторная работа

Информатика, кибернетика и программирование

Построить на отдельных рисунках графики функций Бесселя первого рода Jn(x) для различных ее номеров n в интервале. Функции Бесселя вызываются командой BesselJ(n,x), где n – номер функции Бесселя, x – независимая переменная. Построить первые 6 функций Бесселя для. Как они выглядят и чем отличаются друг от друга Сделать подписи осей курсивом

Русский

2014-09-23

218 KB

13 чел.

ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ
«МЭИ» в г. Смоленске

Кафедра высшей математики

Отчет

по лабораторной работе №2

Тема: «Двумерные графики. Дифференцирование.Интегрирование функции одной переменной .Интегрирование функции многих переменных .Действия с матрицами.

по курсу: «Дискретная математика»

                                                                       Студентка:                             Скобелева М.С.

           Группа:                                                ПИЭ-11

                                                                              Преподаватель:                        Мазалов М.Я

Смоленск, 2012

Выполнила: Скобелева М.С.

Группа: ПИЭ-11

Контрольные задания.

  1.  Построить на отдельных рисунках графики функций Бесселя первого рода Jn(x) для различных ее номеров n в интервале –20<x<20. Функции Бесселя вызываются командой BesselJ(n,x), где n – номер функции Бесселя, x – независимая переменная. Построить первые 6 функций Бесселя для n=0,1,2,3,4,5,6. Как они выглядят и чем отличаются друг от друга? Сделать подписи осей курсивом.
  2.  > restart
  3.  > plot([J(0,x)],x=-20...20,y=-1...1,color=[red]);plot([BesselJ(0,x)],x=-20...20,y=-1...1,color=[red]);

  1.  
  2.  >
  3.  > plot([J(1,x)],x=-20...20,y=-1...1,color=[red]);plot([BesselJ(1,x)],x=-20...20,y=-1...1,color=[red]),labelfont=[TIMES,ITALIC,12;
  4.  
  5.  >
  6.  > plot([J(2,x)],x=-20...20,y=-1...1,color=[red]);plot([BesselJ(2,x)],x=-20...20,y=-1...1,color=[red]);
  7.  
  8.  >
  9.  > plot([J(3,x)],x=-20...20,y=-1...1,color=[red]);plot([BesselJ(3,x)],x=-20...20,y=-1...1,color=[red]);
  10.  
  11.  >
  12.  > plot([J(4,x)],x=-20...20,y=-1...1,color=[red]);plot([BesselJ(4,x)],x=-20...20,y=-1...1,color=[red]);

  1.  
  2.  >
  3.  > plot([J(5,x)],x=-20...20,y=-1...1,color=[red]);plot([BesselJ(5,x)],x=-20...20,y=-1...1,color=[red]);
  4.  
  5.  
  6.  >
  7.  > plot(([J(6,x)],x=-20...20,y=-1...1,color=[red]));plot([BesselJ(6,x)],x=-20...20,y=-1...1,color=[red]);
  8.  

2.Построить график функции  в полярных координатах при 0<<4. Используйте цвет линии под названием magenta, установите толщину линии 3.

> restart

> plot(cos(x/3)*cos(x/3)*cos(x/3),x=0..4*Pi,color=magenta,thickness=3);

3. Построить график функции

> restart;

f(x):=piecewise(x<=0,0,  x<Pi ,sin(x),pi<x,0);

> plot(f(x), x=-1..20,y=-1..1);

4. Найти

> Diff(ln(x),x$5)=diff(ln(x),x$5);

5. Найти все частные производные 2 – ого порядка функции

.

> restert; f:=arctan*(x+y)/(1-x*y):

> Diff(f,x$2)=simplify(diff(f,x$2));

> Diff(f,x,y)=diff(f,x,y);

6. Вычислить неопределенный интеграл .

> Int((x^3-6)/(x^4+6*x^2+8),x)=int((x^3-6)/(x^4+6*x^2+8),x);

7. Вычислить несобственный интеграл  при a>0 b>0 для случаев: 1) a>b, 2) a=b,  3)a<b.

> restart; assume(a>0,b<0);

> Int(((sin(a*x)*cos(b*x))/x),x=0..+infinity)=int(((sin(a*x)*cos(b*x))/x),x=0..+infinity);

> restart; assume(a=b);

> Int(((sin(a*x)*cos(b*x))/x),x=0..+infinity)=int(((sin(a*x)*cos(b*x))/x),x=0..+infinity);

> restart; assume(a<b);

> Int(((sin(a*x)*cos(b*x))/x),x=0..+infinity)=int(((sin(a*x)*cos(b*x))/x),x=0..+infinity);

8. Вычислить тройной интеграл:

.

> restar;

> with(student): J:=Tripleint(ln(z-x-y)/((x-exp)*(x+y-exp)), z=exp..x+y+e, y=0..exp-x-1,x=0..exp-1);

> J:=value(%);

9. Даны матрицы  и . Найти: AB, BA, detA, detB.

> restart;

> with(linalg): A:=matrix([[5,7,-3,-4],[7,6,-4,-5],[6,4,-3,-2],[8,5,-6,-1]]):B:=matrix([[1,2,3,4],[2,3,4,5],[1,3,5,7],[2,4,6,8]]):

> Det(A)=det(A);Det(B)=det(B);

> multiply(A,B);

> multiply(B,A);

10. Дана матрица: . Найти: detA, А-1, M32, A'.

> restart;with(linalg): A:=matrix([[1,2,3,4],[2,3,1,2],[1,1,1,-1],[1,0,-2,-6]]);

Warning, the protected names norm and trace have been redefined and unprotected

> Det(A)=det(A);

> transpose(A);

> inverse(A);

> det(minor(A,3,2));

Контрольные вопросы

  1.  Команда plot и ее параметры.

Для построения графиков функции f(x) одной переменной (в интервале  по оси Ох и в интервале  по оси Оу) используется команда plot(f(x), x=a..b, y=c..d, parameters), где parameters – параметры управления изображением. Если их не указывать, то будут использованы установки по умолчанию. Настройка изображения также может осуществляться с панели инструментов.

Основные параметры команды plot:

1) title=”text”, где text-заголовок рисунка (текст можно оставлять без кавычек, если он содержит только латинские буквы без пробелов).

2) coords=polar – установка полярных координат (по умолчанию установлены декартовы).

3) axes – установка типа координатных осей: axes=NORMAL – обычные оси; axes=BOXED – график в рамке со шкалой; axes=FRAME – оси с центром в левом нижнем углу рисунка; axes=NONE – без осей.

4) scaling – установка масштаба рисунка: scaling=CONSTRAINED – одинаковый масштаб по осям; scaling=UNCONSTRAINED – график масштабируется по размерам окна.

5) style=LINE(POINT) – вывод линиями (или точками).

6) numpoints=n – число вычисляемых точек графика (по умолчанию n=49).

7) сolor – установка цвета линии: английское название цвета, например, yellow – желтый и т.д.

8) xtickmarks=nx и ytickmarks=ny – число меток по оси Оx и оси Оy, соответственно.

9) thickness=n, где n=1,2,3… - толщина линии (по умолчанию n=1).

10) linestyle=n – тип линии: непрерывная, пунктирная и т.д. (n=1 – непрерывная, установлено по умолчанию).

11) symbol=s тип символа, которым помечают точки: BOX, CROSS, CIRCLE, POINT, DIAMOND.

12) font=[f,style,size] установка типа шрифта для вывода текста: f задает название шрифтов: TIMES, COURIER, HELVETICA, SYMBOL; style задает стиль шрифта: BOLD, ITALIC, UNDERLINE; size размер шрифта в pt.

13) labels=[tx,ty] – надписи по осям координат: tx – по оси Оx и ty – по оси Оy.

14) discont=true – указание для построения бесконечных разрывов.

С помощью команды plot можно строить помимо графиков функций y=f(x), заданной явно, также графики функций, заданных параметрически y=y(t), x=x(t), если записать команду plot([y=y(t), x=x(t), t=a..b], parameters).

  1.  Аналитическое и численное интегрирование.

Неопределенный интеграл  вычисляется с помощью 2-х команд:

  1.  прямого исполнения – int(f, x), где f – подынтегральная функция, x – переменная интегрирования;
  2.  отложенного исполнения – Int(f, x) – где параметры команды такие же, как и в команде прямого исполнения int. Команда Int выдает на экран интеграл в аналитическом виде математической формулы.

Для вычисления определенного интеграла  в командах int и  Int добавляются пределы интегрирования, например,

> Int((1+cos(x))^2, x=0..Pi)=

int((1+cos(x))^2, x=0..Pi);

Если в команде интегрирования добавить опцию continuous: int(f, x, continuous), то Maple будет игнорировать любые возможные разрывы подынтегральной функции в диапазоне интегрирования. Это позволяет вычислять несобственные интегралы от неограниченных функций. Несобственные интегралы с бесконечными пределами интегрирования вычисляются, если в параметрах команды int указывать, например, x=0..+infinity.

Численное интегрирование выполняется командой evalf(int(f, x=x1..x2), e), где e – точность вычислений (число знаков после запятой).

Интегралы, зависящие от параметра. Ограничения для параметров.

Если требуется вычислить интеграл, зависящий от параметра, то его значение может зависеть от знака этого параметра или каких-либо других ограничений. Рассмотрим в качестве примера интеграл , который, как известно из математического анализа, сходится при а>0 и расходится при а<0. Если вычислить его сразу, то получится:

> Int(exp(-a*x),x=0..+infinity)=

int(exp(-a*x),x=0..+infinity);

Definite integration: Can't determine if the integral is convergent.

Need to know the sign of --> a

Will now try indefinite integration and then take limits.

.

Таким способом интеграл с параметром не вычислить. Для получения явного аналитического результата вычислений следует сделать какие-либо предположения о значении параметров, то есть наложить на них ограничения. Это можно сделать при помощи команды assume(expr1), где expr1 – неравенство. Дополнительные ограничения вводятся с помощью команды additionally(expr2), где expr2 – другое неравенство, ограничивающее значение параметра с другой стороны.

После наложения ограничений на параметр Maple добавляет к его имени символ (~), например параметр a, на который были наложены некоторые ограничения, в сроке вывода будет иметь вид: a~.

Описание наложенных ограничений параметра a можно вызвать командой about(a). Пример: наложить ограничения на параметр a такие, что a>-1, a3:

> assume(a>-1); additionally(a<=3);

> about(a);

Originally a, renamed a~:

 is assumed to be: RealRange(Open(-1),3)

Вернемся к вычислению интеграла с параметром , которое следует производить в таком порядке:

> assume(a>0);

> Int(exp(-a*x),x=0..+infinity)=

int(exp(-a*x),x=0..+infinity);

4. В Maple имеются две специальные команды для вычисления двойных и тройных интегралов, содержащиеся в библиотеке student.

Для вычисления двойных интегралов  используется команда Doubleint(f(x, y), D), где D – область интегрирования, записываемая в одном из следующих форматов:

  •  x=х1..х2, y=y1..y2, где числа х1, х2, y1, y2 задают прямоугольную область интегрирования;
  •  x=f1(y)..f2(y), y=y1..y2, где f1(y), f2(y)  линии, ограничивающие область интегрирования слева и справа на интервале от y1 до y2; 
  •  x=х1..х2, y=g1(x)..g2(x) , где g1(y), g2(y)  линии, ограничивающие область интегрирования снизу и сверху на интервале от х1 до х2.

Для вычисления тройных интегралов  используется команда Tripleint(f(x, y, z),x, y, z, V), где V – область интегрирования.

Обе эти команды являются командами отложенного действия. Чтобы получить значение интеграла, следует использовать команду value(%).

Повторные интегралы можно вычислять с помощью повторения команды int, например, повторный интеграл  вычисляется командой

> int(int(x^2*y^3, x=0..1), y=0..2);

5. Основная часть команд для решения задач линейной алгебры содержится в библиотеке linalg. Поэтому перед решением задач с матрицами и векторами следует загрузить эту библиотеку командой with(linalg).

Определение матрицы.

Для определения матрицы в Maple можно использовать команду matrix(n, m, [[a11,a12,…,a1n], [a21,a22,…,a2m],…, [an1,an2,…,anm]]), где n  число строк, m – число столбцов в матрице. Эти числа задавать необязательно, а достаточно перечислить элементы матрицы построчно в квадратных скобках через запятую. Например:

> A:=matrix([[1,2,3],[-3,-2,-1]]);

Арифметические операции с матрицами.

Сложение двух матриц одинаковой размерности осуществляется теми же командами, что и сложение векторов: evalm(A+B) или matadd(A,B). Произведение двух матриц может быть найдено с помощью двух команд:

  1.  evalm(A&*B); 
  2.  multiply(A,B).

В качестве второго аргумента в командах, вычисляющих произведение, можно указывать вектор, например:

> A:=matrix([[1,0],[0,-1]]);

> B:=matrix([[-5,1], [7,4]]);

 

> v:=vector([2,4]);

> multiply(A,v);

> multiply(A,B);

> matadd(A,B);

Команда evalm позволяет также прибавлять к матрице число и умножать матрицу на число. Например:

> С:=matrix([[1,1],[2,3]]):

> evalm(2+3*С);

6. Определители, миноры и алгебраические дополнения. Ранг и след матрицы.

Определитель матрицы А вычисляется командой det(A). Команда minor(A,i,j) возвращает матрицу, полученную из исходной матрицы А вычеркиванием i-ой строки и j-ого столбца. Минор Mij элемента aij матрицы А можно вычислить командой det(minor(A,i,j)). Ранг матрицы А вычисляется командой rank(A). След матрицы А, равный сумме ее диагональных элементов, вычисляется командой trace(A).

> K:=matrix([[4,0,5],[0,1,-6],[3,0,4]]);

> det(K);

1

> minor(K,3,2);

> det(%);

-24

> trace(K);

9

7. Обратная и транспонированная матрицы.

Обратную матрицу А1 , такую что А1А=АА1=Е, где Е  единичная матрица, можно вычислить двумя способами:

  1.  evalm(1/A);
  2.  inverse(A).

Транспонирование матрицы А – это изменение местами строк и столбцов. Полученная в результате этого матрица называется транспонированной и обозначается А'. Транспонированную матрицу А' можно вычислить командой transpose(A). 

Например, используя заданную в предыдущем пункте матрицу K, найдем ей обратную и транспонированную:

> inverse(K);

> multiply(K,%);

> transpose(K);


 

А также другие работы, которые могут Вас заинтересовать

38621. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ по выполнению выпускной квалификационной работы по специальности «Юриспруденция» 271.56 KB
  65 Юриспруденция БИБЛИОТЕКА ЦФ РАП Воронеж 2009 № ББК 67р М 54 Методические рекомендации по выполнению выпускной квалификационной работы по специальности 030501. Методические рекомендации по выполнению выпускной квалификационной работы обсуждены и одобрены на заседании учебно методического совета ЦФ РАП Протокол № 4 от 26.2008 Методические рекомендации по написанию и оформлению выпускной квалификационной дипломной работы подготовлены в соответствии с требованиями Федерального закона от 22 августа 1996 г.
38622. Генетический скрининг 96 KB
  Генетический скрининг представляет собой обследование популяции на предмет выявления лиц, обладающих генотипом, о котором известно, что он связан либо с болезнью, либо с предрасположением к ней у человека или его потомства. В научно-исследовательском плане скрининг может дать представление о частоте определенного генотипа в популяции и о полиморфизме заболевания
38623. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ к выполнению и защите выпускных квалификационных работ в Высших учебных заведениях 640.5 KB
  Навыки творческой работы приобретаются студентом в течение всего периода обучения в ВУЗе. Завершается этот процесс выполнением дипломной работы. Оказать необходимую методическую помощь правильно направить усилия студента на качественное выполнение дипломной работы основная задача данного учебнометодического пособия. В нем рассматриваются общие вопросы выполнения дипломной работы: сформулированы требования и даны указания по его объему структуре содержанию по организации работы студента в процессе написания дипломной работы а также...
38624. Технологии деятельности по решению проблем трудоустройства молодежи» (на примере Рязанской области) 650.5 KB
  Основные направления обеспечения занятости молодёжи в Российской Федерации. Анализ деятельности негосударственных субъектов занятости по обеспечению трудоустройства молодёжи в Рязанской области . В то же время учитывая что молодежь есть величайший стратегический и инновационный ресурс страны необходимо признать сферу ее занятости приоритетной частью социальноэкономической политики государства. Серьезной проблемой молодежной занятости является несоответствие объемов и профилей подготовки специалистов...
38625. Правовое регулирование гражданских правоотношений по оказанию юридических услуг 383.5 KB
  Общая характеристика возмездного оказания юридических услуг6 1. История становления и развития правоотношений по оказанию юридических услуг. Понятие юридической услуги в гражданском праве России . Правовое регулирование отношений по оказанию юридических услуг.
38626. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ КУРСОВЫХ И ДИПЛОМНЫХ РАБОТ ПО СОЦИАЛЬНОЙ ПСИХОЛОГИИ 127 KB
  В названии работы как правило представлены предмет и объект исследования. Важно четко знать предмет своего исследования какие психические явления изучаете. Экспериментальное и эмпирическое исследования разные явления. СТРУКТУРА КУРСОВОЙ ДИПЛОМНОЙ РАБОТЫ Стандартная курсовая дипломная работа содержит: титульный лист; оглавление; введение 10 от общего объема; главы основной части: теоретическая 20 30 заканчивается пронумерованными выводами; эмпирическая очень желательно чтобы по объему она была пропорциональна...
38627. ВЛИЯНИЕ НАНОРАЗМЕРНЫХ ДОБАВОК SI3N4 И НАНОВОЛОКОН УГЛЕРОДА НА СТРУКТУРУ И СВОЙСТВА ПОРОШКОВОЙ СТАЛИ У10П 13.14 MB
  Определение закономерностей спекания порошковых сталей содержащих наноразмерные добавки в исходной шихте Исходные данные Железный порошок марки ПЖВ 2. Физика спекания 3. Зависимость твердости порошковой стали с нанодобавками от времени и температуры спекания. Структура порошковых сталей в зависимости от содержания нанодобавок от времени и температуры спекания.
38628. Особенности социально-досуговой деятельности с молодежью (на примере Муниципального Бюджетного Учреждения Молодежного Центра «Успех» в п. Мостовском Краснодарского края) 23.2 MB
  Мостовском Краснодарского края Организация социальнодосуговой деятельности молодежи в Краснодарском крае. Однако это внешняя сторона характерная тем более не для всей молодежи в целом. Вопросам социальной работы с различными категориями молодого поколения посвящены многочисленные научные труды отечественных и зарубежных авторов в которых рассматриваются такие аспекты как история возникновения и развития актуальность содержание технологии и методы осуществления отдельных направлений социальной работы с...
38629. АВТОМАТИЗИРОВАННОЕ РАБОЧЕЕ МЕСТО СПЕЦИАЛИСТА ДЕКАНАТА 9.33 MB
  Некоторые организации используют для этого шкафы с папками но большинство предпочитают компьютеризированные способы базы данных позволяющие эффективно хранить структурировать и систематизировать большие объемы данных. И уже сегодня без баз данных невозможно представить работу большинства финансовых промышленных торговых и прочих организаций. Не будь баз данных они бы просто захлебнулись в информационной лавине. Базы данных позволяют хранить структурировать информацию и извлекать её оптимальным для пользователя образом.