42420

Булева алгебра. Законы логики высказываний. Эквивалентные преобразования

Лабораторная работа

Математика и математический анализ

Законы логики высказываний. Теоретическая часть Всё множество формул логики высказываний с точки зрения их значения истинности разбивается на три класса: 1 тождественно истинные тавтология; 2 тождественно ложные противоречие; 3 нейтральные. Особое место в логике высказываний занимают законы логики тождественно истинные формулы тавтологии. Законы логики высказываний Закон тождества: А эквивалентно А.

Русский

2013-10-29

83 KB

30 чел.

Практическое занятие №7

Тема: Булева алгебра.

Законы логики высказываний. Эквивалентные преобразования.

Занятие рассчитано на 2 академических часа.

Цель работы: овладение практическими навыками эквивалентных преобразований формул с помощью законов логики.

Теоретическая часть

Всё множество формул логики высказываний с точки зрения их значения истинности разбивается на три класса:

1) тождественно истинные (тавтология); 2) тождественно ложные (противоречие); 3) нейтральные.

Определение 1: Формула называется тождественно истинной, если она принимает значение «истина» при всех наборах значений входящих в неё переменных.

Определение 2: Формула называется тождественно ложной, если она принимает значение «ложь» при всех наборах значений входящих в неё переменных.

Пример: - всегда истинна,  - всегда ложна.

   

А







1

0

1

0

0

1

1

0


Определение 3: Формула называется нейтральной, если она при одних наборах значений входящих в неё переменных принимает значение «истина», а при других - «ложь».

Тождественно истинные и нейтральные формулы образуют множество выполнимых формул, а тождественно ложные - множество невыполнимых формул. Особое место в логике высказываний занимают законы логики - тождественно истинные формулы (тавтологии).

Законы логики высказываний

  1.  Закон тождества: А эквивалентно А.
  2.  Закон противоречия: (неверно, что А и не А).
  3.  Закон исключенного третьего: А или не А
  4.  Коммутативный закон: , .
  5.  Ассоциативный закон: (С  С С  С.
  6.  Дистрибутивный закон: СС СС
  7.  Закон идемпотентности: , 
  8.  Закон поглощения:  
  9.  Закон исключения тавтологии из конъюнкции: .
  10.  Закон превращения дизъюнкции в тавтологию: 
  11.  Правило превращения конъюнкции в противоречие: 
  12.  Закон исключения противоречия из дизъюнкции: 
  13.  Закон двойного отрицания: 
  14.  Законы де Моргана:  
  15.  Закон склеивания:  
  16.  Законы выражения одних союзов через другие:

    =()() ;

В логике высказываний законы логики используются для доказательства эквивалентности  формул с помощью их преобразований.

Определение 4: Эквивалентным преобразованием данной формулы будем называть замену этой формулы через другую, которая ей эквивалентна.

Эти преобразования могут служить средством упрощения формул (проблема минимизации), для того чтобы получить формулы эквивалентные данным, но с более простой структурой.

Определение 5: Более простой по сравнению с данной формулой, не содержащей знаков импликации, двойной импликации, сильной дизъюнкции, отрицаний неэлементарных формул, будем считать формулу, которая содержит меньшее число: 1) вхождений букв; 2) знаков операций; 3) пар скобок.

Рассмотрим вопрос об упрощении системы высказываний.

Пусть F1, F2,…, Fn - какие-либо формулы логики высказываний. Они будут одновременно истинны только тогда, когда будет истинна их конъюнкция F1F2Fn.  Это даёт возможность упрощать системы высказываний. Для упрощения системы высказываний, каждое из которых истинно, необходимо:

  1.  записать каждое высказывание в такой эквивалентной форме, в которой исключены знаки импликации, двойной импликации и сильной дизъюнкции, а знаки отрицания отнесены только к атомам;
  2.  записать всю систему этих высказываний в виде конъюнкции;
  3.  применяя эквивалентные преобразования, упростить эту конъюнкцию.

Методические указания

Для успешного решения логических задач необходимо знание всех законов логики, а также изучение примеров этой работы.

Пример 1: Найти формулу эквивалентную данной, но с более простой структурой.

((CC(((C)(((CCCCCCCC=CCCCCC

Пример 2: Найти более простую дизъюнкцию, эквивалентную данной системе:

  1.  А 2) С 3)(ВС).

Решение: Из всех высказываний исключим знаки импликации:

1) 2) С 3) СС

Теперь составим их конъюнкцию:

(СССССС

Пример 3: Для заданной формулы АВ составьте таблицу истинности и интерпретируйте  на диаграммах Эйлера-Венна.

Решение: Связь между высказываниями и их множествами истинности дает возможность переводить любую задачу, относящуюся к сложным высказываниям, в задачу теории множеств. Возможно и обратное: если сформулирована задача относительно операции над множествами, то универсальное множество можно представить как некоторое множество логических возможностей, а его подмножества как множества истинности некоторых высказываний. Таким образом, каждому высказыванию соответствует множество истинности. Каждой операции над высказываниями соответствует операция над множествами. Каждому отношению соответствует отношение между множествами истинности.

В нашем случае, если А и В - высказывания, то, например, АВ - также высказывание, и следовательно, оно должно иметь свое множество истинности. Изобразим это множество. Значению истинности переменных А и В в каждой из четырех строк таблицы истинности ставим в соответствие одно из четырех подмножеств на диаграмме Эйлера-Венна (рис.1).

Строки

А

В

Подмножества

истинности

1

1

1

А1∩В1

2

1

0

А1∩ ┐В1

3

0

1

┐А1∩В1

4

1

1

┐А1∩┐В1

Рис 1.

 

Рис.2.

     

Подмножества, соответствующие тем строкам, в которых молекулярное высказывание истинно, заштриховываются. Таким образом, высказыванию АВ ставится в соответствие множество (А1∩┐В1)U(┐А1∩В1), ибо АВ истинно во 2 и 3 строках таблицы, т.е.={10,01}.

Контрольные вопросы

1. Дайте определение тождественно истинной, тождественно ложной и нейтральной формул.

2. В чем состоит проблема минимизации формул?

3. Что называется эквивалентным преобразованием формулы?

4. Перечислите все 15 законов логики высказываний.

5. Назовите законы выражения одних союзов через другие.

6. Как производится упрощение системы высказываний?

Индивидуальные задания

1. Определите, с помощью таблицы истинности, является ли приведенная функция тождественно-истинной, тождественно-ложной или нейтральной.

1) С 11) С    21)  

2) С|  12) С    22)  С

3) С 13) С         23)  С

4) С| 14) С     24)  С

5) С 15) С         25) 

6) С|С  16) С          26)  С 

7) СС 17)СС         27) СС

8) С  18) С       28) С

9)  19) С     29) С

10) С 20) С; 30) С

2.  Для заданной формулы составьте таблицу истинности и интерпретируйте  на диаграммах Эйлера-Венна.

1)   ССВ 11)АС      21) САС

  1.  АССВ 12) СС  22) С
  2.  ССС 13) В        23) АССВ
  3.  С   14) ССА     24) ССА
  4.  С 15) АСС25) АС
  5.  ССА 16) СА26) САС
  6.  АС 17) ВСА   27) СВС

8  СВС 18)ССС     28) С;

     9)  СС 19) СВ     29) ССС

    10) САС 20) ССВ;  30) С|СВ;

3.  Исследуйте,  подчинена ли операция:

1) импликации законам коммутативности, ассоциативности и идемпотентности, т.е. верно ли, что:

1) АВ=ВА; 2) (АВ)С=АС); 3) АА=А.

2) двойная импликация законам коммутативности, ассоциативности и идемпотентности, т.е. верно ли, что:

1) А↔В=В↔А; 2) (А↔В)↔С=А↔(В↔С); 3) А↔А=А.

3) строгая дизъюнкция (эквиваленция) законам коммутативности, ассоциативности и идемпотентности?

4) «штрих Шеффера» и «символ Лукасевича» законам коммутативности, ассоциативности и идемпотентности?

4.  Сформулируйте высказывания, которые по законам де Моргана, выражают то же, что и следующие:

1) Неверно, что треугольник АВС – прямоугольный и равнобедренный; 2) Неверно, что хотя бы одно из чисел а и в - простое;

3) Неверно, что число 9- четное или простое;

4) Неверно, что каждое из чисел m и n чётно.

PAGE  1


А
1       В1  U

     2

    3

  2  


 

А также другие работы, которые могут Вас заинтересовать

65512. ЧЕРВОНИХ СТОЛОВИХ ВИН НА ОСНОВІ ВИКОРИСТАННЯ ВУГЛЕКИСЛОТНОЇ МАЦЕРАЦІЇ 932 KB
  Найважливішою тенденцією розвитку сучасної виноробної галузі є підвищення якості та розширення асортименту виноградних вин. Основний об'єм столових вин України складають вина, які випускають без витримки і реалізують не раніше 1 січня наступного за врожаєм року.
65513. СПЕЦИФІКА ЛЮДСЬКОГО ІСНУВАННЯ У РЕЛІГІЙНІЙ ФІЛОСОФІЇ В. РОЗАНОВА 211 KB
  Розанова провидця що у своїх численних замальовках зумів передбачити багато епохальних у тому числі й філософських подій ХХ ст. Розанова актуально й для сучасної культури. Розанова як ідеолога національного і особистого самовизначення який шукав зміст народної душі...
65514. ДЕРЖАВНИЙ КОНТРОЛЬ ЗА ДІЯЛЬНІСТЮ МІЛІЦІЇ 184.5 KB
  Держава керуючись невідкладними завданнями які вона ставить перед собою в певний період розвитку має контролювати їхнє виконання консолідувати зусилля на подолання перешкод а також визначати і завдання контролю та механізм його здійснення.
65515. МЕТОД РОЗРАХУНКУ ТЕМПЕРАТУРНОГО НАПРУЖЕНО-ДЕФОРМОВАНОГО СТАНУ КОМПОЗИТНИХ СТРИНГЕРІВ ПАНЕЛЕЙ ОБШИВКИ 1.26 MB
  Наукова новизна одержаних результатів полягає у такому: уперше виявлено і обґрунтовано механізм виникнення згинально-крутильних деформацій композитних стержнів з неоднорідним перерізом при зміні температури та або внаслідок усадки...
65516. ФОРМУВАННЯ ДУХОВНО-ТВОРЧОГО ПОТЕНЦІАЛУ СТУДЕНТСЬКОЇ МОЛОДІ В ТРАНСФОРМАЦІЙНОМУ СУСПІЛЬСТВІ 154 KB
  Зрозуміло кожен з нас зацікавлений щоб цей вигляд був гуманістичним культурним людським і людяним і оскільки це так кожен зацікавлений у формуванні відповідних норм в свідомості та поведінці молоді у більш широкому розумінні...
65517. Методи та алгоритми диспетчеризації завдань у розподілених комп’ютерних системах 572.5 KB
  Сьогодні участь у міжнародних програмах стає стратегічним питанням інформаційного розвитку держав. Україна також стоїть на шляху науково-технічної інтеграції у європейський та світовий простір, про що говорить низка проектів, в яких Україна є повноправним учасником.
65519. ДІАГНОСТИЧНА ЗНАЧИМІСТЬ НОВОГО МЕТОДУ ДОВГОХВИЛЬОВОЇ ОФТАЛЬМОГРАФІЇ У ХВОРИХ З ВІКОВОЮ МАКУЛЯРНОЮ ДЕГЕНЕРАЦІЄЮ 226 KB
  Патологія макулярної ділянки очного дна займає одне з перших місць в світі як причина слабкого зору та сліпоти і на теперішній час вважається найбільш складною для діагностики та лікування. Одним із найбільш розповсюджених та найтяжчих захворювань органа зору серед патології очного дна...
65520. Особливості використання сучасних сортів ячменю ярого в селекції на пивоварну якість та продуктивність 222.5 KB
  Актуальність теми полягає в необхідності встановлення ефективності селекції ячменю ярого на пивоварну якість і урожайність на основі використання в схрещуванні сучасних сортів виділених за цінними ознаками продуктивності...