42420

Булева алгебра. Законы логики высказываний. Эквивалентные преобразования

Лабораторная работа

Математика и математический анализ

Законы логики высказываний. Теоретическая часть Всё множество формул логики высказываний с точки зрения их значения истинности разбивается на три класса: 1 тождественно истинные тавтология; 2 тождественно ложные противоречие; 3 нейтральные. Особое место в логике высказываний занимают законы логики тождественно истинные формулы тавтологии. Законы логики высказываний Закон тождества: А эквивалентно А.

Русский

2013-10-29

83 KB

30 чел.

Практическое занятие №7

Тема: Булева алгебра.

Законы логики высказываний. Эквивалентные преобразования.

Занятие рассчитано на 2 академических часа.

Цель работы: овладение практическими навыками эквивалентных преобразований формул с помощью законов логики.

Теоретическая часть

Всё множество формул логики высказываний с точки зрения их значения истинности разбивается на три класса:

1) тождественно истинные (тавтология); 2) тождественно ложные (противоречие); 3) нейтральные.

Определение 1: Формула называется тождественно истинной, если она принимает значение «истина» при всех наборах значений входящих в неё переменных.

Определение 2: Формула называется тождественно ложной, если она принимает значение «ложь» при всех наборах значений входящих в неё переменных.

Пример: - всегда истинна,  - всегда ложна.

   

А







1

0

1

0

0

1

1

0


Определение 3: Формула называется нейтральной, если она при одних наборах значений входящих в неё переменных принимает значение «истина», а при других - «ложь».

Тождественно истинные и нейтральные формулы образуют множество выполнимых формул, а тождественно ложные - множество невыполнимых формул. Особое место в логике высказываний занимают законы логики - тождественно истинные формулы (тавтологии).

Законы логики высказываний

  1.  Закон тождества: А эквивалентно А.
  2.  Закон противоречия: (неверно, что А и не А).
  3.  Закон исключенного третьего: А или не А
  4.  Коммутативный закон: , .
  5.  Ассоциативный закон: (С  С С  С.
  6.  Дистрибутивный закон: СС СС
  7.  Закон идемпотентности: , 
  8.  Закон поглощения:  
  9.  Закон исключения тавтологии из конъюнкции: .
  10.  Закон превращения дизъюнкции в тавтологию: 
  11.  Правило превращения конъюнкции в противоречие: 
  12.  Закон исключения противоречия из дизъюнкции: 
  13.  Закон двойного отрицания: 
  14.  Законы де Моргана:  
  15.  Закон склеивания:  
  16.  Законы выражения одних союзов через другие:

    =()() ;

В логике высказываний законы логики используются для доказательства эквивалентности  формул с помощью их преобразований.

Определение 4: Эквивалентным преобразованием данной формулы будем называть замену этой формулы через другую, которая ей эквивалентна.

Эти преобразования могут служить средством упрощения формул (проблема минимизации), для того чтобы получить формулы эквивалентные данным, но с более простой структурой.

Определение 5: Более простой по сравнению с данной формулой, не содержащей знаков импликации, двойной импликации, сильной дизъюнкции, отрицаний неэлементарных формул, будем считать формулу, которая содержит меньшее число: 1) вхождений букв; 2) знаков операций; 3) пар скобок.

Рассмотрим вопрос об упрощении системы высказываний.

Пусть F1, F2,…, Fn - какие-либо формулы логики высказываний. Они будут одновременно истинны только тогда, когда будет истинна их конъюнкция F1F2Fn.  Это даёт возможность упрощать системы высказываний. Для упрощения системы высказываний, каждое из которых истинно, необходимо:

  1.  записать каждое высказывание в такой эквивалентной форме, в которой исключены знаки импликации, двойной импликации и сильной дизъюнкции, а знаки отрицания отнесены только к атомам;
  2.  записать всю систему этих высказываний в виде конъюнкции;
  3.  применяя эквивалентные преобразования, упростить эту конъюнкцию.

Методические указания

Для успешного решения логических задач необходимо знание всех законов логики, а также изучение примеров этой работы.

Пример 1: Найти формулу эквивалентную данной, но с более простой структурой.

((CC(((C)(((CCCCCCCC=CCCCCC

Пример 2: Найти более простую дизъюнкцию, эквивалентную данной системе:

  1.  А 2) С 3)(ВС).

Решение: Из всех высказываний исключим знаки импликации:

1) 2) С 3) СС

Теперь составим их конъюнкцию:

(СССССС

Пример 3: Для заданной формулы АВ составьте таблицу истинности и интерпретируйте  на диаграммах Эйлера-Венна.

Решение: Связь между высказываниями и их множествами истинности дает возможность переводить любую задачу, относящуюся к сложным высказываниям, в задачу теории множеств. Возможно и обратное: если сформулирована задача относительно операции над множествами, то универсальное множество можно представить как некоторое множество логических возможностей, а его подмножества как множества истинности некоторых высказываний. Таким образом, каждому высказыванию соответствует множество истинности. Каждой операции над высказываниями соответствует операция над множествами. Каждому отношению соответствует отношение между множествами истинности.

В нашем случае, если А и В - высказывания, то, например, АВ - также высказывание, и следовательно, оно должно иметь свое множество истинности. Изобразим это множество. Значению истинности переменных А и В в каждой из четырех строк таблицы истинности ставим в соответствие одно из четырех подмножеств на диаграмме Эйлера-Венна (рис.1).

Строки

А

В

Подмножества

истинности

1

1

1

А1∩В1

2

1

0

А1∩ ┐В1

3

0

1

┐А1∩В1

4

1

1

┐А1∩┐В1

Рис 1.

 

Рис.2.

     

Подмножества, соответствующие тем строкам, в которых молекулярное высказывание истинно, заштриховываются. Таким образом, высказыванию АВ ставится в соответствие множество (А1∩┐В1)U(┐А1∩В1), ибо АВ истинно во 2 и 3 строках таблицы, т.е.={10,01}.

Контрольные вопросы

1. Дайте определение тождественно истинной, тождественно ложной и нейтральной формул.

2. В чем состоит проблема минимизации формул?

3. Что называется эквивалентным преобразованием формулы?

4. Перечислите все 15 законов логики высказываний.

5. Назовите законы выражения одних союзов через другие.

6. Как производится упрощение системы высказываний?

Индивидуальные задания

1. Определите, с помощью таблицы истинности, является ли приведенная функция тождественно-истинной, тождественно-ложной или нейтральной.

1) С 11) С    21)  

2) С|  12) С    22)  С

3) С 13) С         23)  С

4) С| 14) С     24)  С

5) С 15) С         25) 

6) С|С  16) С          26)  С 

7) СС 17)СС         27) СС

8) С  18) С       28) С

9)  19) С     29) С

10) С 20) С; 30) С

2.  Для заданной формулы составьте таблицу истинности и интерпретируйте  на диаграммах Эйлера-Венна.

1)   ССВ 11)АС      21) САС

  1.  АССВ 12) СС  22) С
  2.  ССС 13) В        23) АССВ
  3.  С   14) ССА     24) ССА
  4.  С 15) АСС25) АС
  5.  ССА 16) СА26) САС
  6.  АС 17) ВСА   27) СВС

8  СВС 18)ССС     28) С;

     9)  СС 19) СВ     29) ССС

    10) САС 20) ССВ;  30) С|СВ;

3.  Исследуйте,  подчинена ли операция:

1) импликации законам коммутативности, ассоциативности и идемпотентности, т.е. верно ли, что:

1) АВ=ВА; 2) (АВ)С=АС); 3) АА=А.

2) двойная импликация законам коммутативности, ассоциативности и идемпотентности, т.е. верно ли, что:

1) А↔В=В↔А; 2) (А↔В)↔С=А↔(В↔С); 3) А↔А=А.

3) строгая дизъюнкция (эквиваленция) законам коммутативности, ассоциативности и идемпотентности?

4) «штрих Шеффера» и «символ Лукасевича» законам коммутативности, ассоциативности и идемпотентности?

4.  Сформулируйте высказывания, которые по законам де Моргана, выражают то же, что и следующие:

1) Неверно, что треугольник АВС – прямоугольный и равнобедренный; 2) Неверно, что хотя бы одно из чисел а и в - простое;

3) Неверно, что число 9- четное или простое;

4) Неверно, что каждое из чисел m и n чётно.

PAGE  1


А
1       В1  U

     2

    3

  2  


 

А также другие работы, которые могут Вас заинтересовать

37940. ОПРЕДЕЛЕНИЕ УСКОРЕНИЯ СВОБОДНОГО ПАДЕНИЯ С ПОМОЩЬЮ ФИЗИЧЕСКОГО И МАТЕМАТИЧЕСКОГО МАЯТНИКОВ 166.5 KB
  Определение ускорения свободного падения с помощью математического маятника. Определение ускорения свободного падения с помощью оборотного маятника.Определение ускорения свободного падения с помощью математического маятника.Определение ускорения свободного падения с помощью оборотного маятника.
37941. ИЗУЧЕНИЕ КОЛЕБАНИЙ ПРУЖИННОГО МАЯТНИКА 168.5 KB
  11 Изучение свободных незатухающих колебаний пружинного маятника.11 Изучение затухающих колебаний пружинного маятника12 5. Изучение вынужденных колебаний пружинного маятника.14 ЛАБОРАТОРНАЯ РАБОТА № 10 ИЗУЧЕНИЕ КОЛЕБАНИЙ ПРУЖИННОГО МАЯТНИКА Цель работы Изучение свободных незатухающих свободных затухающих и вынужденных колебаний пружинного маятника.
37942. Изучение собственных колебаний струны 137 KB
  Колебания струны5 3.10 Лабораторная работа № 11 а Изучение собственных колебаний струны 1. Цель работы Изучение собственных колебаний струны. Колебания струны В закрепленной с обоих концов натянутой струне при возбуждении поперечных колебаний устанавливаются стоячие волны причем в местах закрепления струны должны располагаться узлы.
37943. Определение ускорения силы тяжести при свободном падении тела 374 KB
  Центростремительное ускорение соответствующее движению Земли по орбите годичное вращение гораздо меньше чем центростремительное ускорение связанное с суточным вращением Земли. Поэтому с достаточной точностью можно считать что система отсчета связанная с Землей вращается относительно инерциальных систем с постоянной угловой скоростью суточного t = 86400 с вращения Земли . Если не учитывать вращение Земли то тело лежащее на ее поверхности следует рассматривать как покоящееся сумма действующих на это тело сил равнялось бы тогда...
37944. Изучение закона сохранения энергии с помощью маятника Максвелла 188 KB
  12 Лабораторная работа № 13 Изучение закона сохранения энергии с помощью маятника Максвелла 1. Цель работы Изучение закона сохранения энергии на примере движения маятника Максвелла. Диск маятника представляет собой непосредственно сам диск и сменные кольца которые закрепляются на диске. При освобождении маятника диск начинает движение: поступательное вниз и вращательное вокруг своей оси симметрии.
37945. НАКЛОННЫЙ МАЯТНИК 252 KB
  Изучение силы трения качения. Определение коэффициента трения качения. Со стороны поверхности на тело действует сила трения FТР. Тело скользит по поверхности со скоростью на него действует сила трения совершающая отрицательную работу вследствие чего полная механическая энергия системы уменьшается т.
37946. Изучение закона сохранения момента импульса с помощью гироскопа и определение скорости его прецессии 695 KB
  12 Лабораторная работа № 15 Изучение закона сохранения момента импульса с помощью гироскопа и определение скорости его прецессии 1. Цель работы Изучение гироскопического эффекта и закона сохранения момента импульса с помощью гироскопа. Определение скорости прецессии гироскопа измерение угловой скорости вращения маховика гироскопа и момента инерции гироскопа. Справедливость этого закона можно проверить с помощью гироскопа.
37947. Определение коэффициента Пуассона воздуха методом адиабати 445 KB
  1 Определение коэффициента Пуассона воздуха методом адиабатического расширения: Методические указания к лабораторной работе № 16 по курсу общей физики Уфимск. В работе определяется коэффициент Пуассона воздуха методом адиабатического расширения основанным на измерении давления газа в сосуде после последовательно происходящих процессов его адиабатического расширения и изохорного нагревания.8] Список литературы ЛАБОРАТОРНАЯ РАБОТА № 16 ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ПУАССОНА ВОЗДУХА МЕТОДОМ АДИАБАТИЧЕСКОГО РАСШИРЕНИЯ 1. Цель работы Определение...
37948. ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА УРАВНЕНИЯ СОСТОЯНИЯ И ЗАКОНОВ ИДЕАЛЬНОГО ГАЗА 146.5 KB
  1 Экспериментальная проверка уравнения состояния и законов идеального газа: Методические указания к лабораторной работе № 17 по курсу общей физики Уфимск. В работе изучается взаимосвязь параметров задающих состояние идеального газа и закономерности их изменения. Контрольные вопросы [7] Список литературы ЛАБОРАТОРНАЯ РАБОТА № 17 ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА УРАВНЕНИЯ СОСТОЯНИЯ И ЗАКОНОВ ИДЕАЛЬНОГО ГАЗА 1.