42420

Булева алгебра. Законы логики высказываний. Эквивалентные преобразования

Лабораторная работа

Математика и математический анализ

Законы логики высказываний. Теоретическая часть Всё множество формул логики высказываний с точки зрения их значения истинности разбивается на три класса: 1 тождественно истинные тавтология; 2 тождественно ложные противоречие; 3 нейтральные. Особое место в логике высказываний занимают законы логики тождественно истинные формулы тавтологии. Законы логики высказываний Закон тождества: А эквивалентно А.

Русский

2013-10-29

83 KB

30 чел.

Практическое занятие №7

Тема: Булева алгебра.

Законы логики высказываний. Эквивалентные преобразования.

Занятие рассчитано на 2 академических часа.

Цель работы: овладение практическими навыками эквивалентных преобразований формул с помощью законов логики.

Теоретическая часть

Всё множество формул логики высказываний с точки зрения их значения истинности разбивается на три класса:

1) тождественно истинные (тавтология); 2) тождественно ложные (противоречие); 3) нейтральные.

Определение 1: Формула называется тождественно истинной, если она принимает значение «истина» при всех наборах значений входящих в неё переменных.

Определение 2: Формула называется тождественно ложной, если она принимает значение «ложь» при всех наборах значений входящих в неё переменных.

Пример: - всегда истинна,  - всегда ложна.

   

А







1

0

1

0

0

1

1

0


Определение 3: Формула называется нейтральной, если она при одних наборах значений входящих в неё переменных принимает значение «истина», а при других - «ложь».

Тождественно истинные и нейтральные формулы образуют множество выполнимых формул, а тождественно ложные - множество невыполнимых формул. Особое место в логике высказываний занимают законы логики - тождественно истинные формулы (тавтологии).

Законы логики высказываний

  1.  Закон тождества: А эквивалентно А.
  2.  Закон противоречия: (неверно, что А и не А).
  3.  Закон исключенного третьего: А или не А
  4.  Коммутативный закон: , .
  5.  Ассоциативный закон: (С  С С  С.
  6.  Дистрибутивный закон: СС СС
  7.  Закон идемпотентности: , 
  8.  Закон поглощения:  
  9.  Закон исключения тавтологии из конъюнкции: .
  10.  Закон превращения дизъюнкции в тавтологию: 
  11.  Правило превращения конъюнкции в противоречие: 
  12.  Закон исключения противоречия из дизъюнкции: 
  13.  Закон двойного отрицания: 
  14.  Законы де Моргана:  
  15.  Закон склеивания:  
  16.  Законы выражения одних союзов через другие:

    =()() ;

В логике высказываний законы логики используются для доказательства эквивалентности  формул с помощью их преобразований.

Определение 4: Эквивалентным преобразованием данной формулы будем называть замену этой формулы через другую, которая ей эквивалентна.

Эти преобразования могут служить средством упрощения формул (проблема минимизации), для того чтобы получить формулы эквивалентные данным, но с более простой структурой.

Определение 5: Более простой по сравнению с данной формулой, не содержащей знаков импликации, двойной импликации, сильной дизъюнкции, отрицаний неэлементарных формул, будем считать формулу, которая содержит меньшее число: 1) вхождений букв; 2) знаков операций; 3) пар скобок.

Рассмотрим вопрос об упрощении системы высказываний.

Пусть F1, F2,…, Fn - какие-либо формулы логики высказываний. Они будут одновременно истинны только тогда, когда будет истинна их конъюнкция F1F2Fn.  Это даёт возможность упрощать системы высказываний. Для упрощения системы высказываний, каждое из которых истинно, необходимо:

  1.  записать каждое высказывание в такой эквивалентной форме, в которой исключены знаки импликации, двойной импликации и сильной дизъюнкции, а знаки отрицания отнесены только к атомам;
  2.  записать всю систему этих высказываний в виде конъюнкции;
  3.  применяя эквивалентные преобразования, упростить эту конъюнкцию.

Методические указания

Для успешного решения логических задач необходимо знание всех законов логики, а также изучение примеров этой работы.

Пример 1: Найти формулу эквивалентную данной, но с более простой структурой.

((CC(((C)(((CCCCCCCC=CCCCCC

Пример 2: Найти более простую дизъюнкцию, эквивалентную данной системе:

  1.  А 2) С 3)(ВС).

Решение: Из всех высказываний исключим знаки импликации:

1) 2) С 3) СС

Теперь составим их конъюнкцию:

(СССССС

Пример 3: Для заданной формулы АВ составьте таблицу истинности и интерпретируйте  на диаграммах Эйлера-Венна.

Решение: Связь между высказываниями и их множествами истинности дает возможность переводить любую задачу, относящуюся к сложным высказываниям, в задачу теории множеств. Возможно и обратное: если сформулирована задача относительно операции над множествами, то универсальное множество можно представить как некоторое множество логических возможностей, а его подмножества как множества истинности некоторых высказываний. Таким образом, каждому высказыванию соответствует множество истинности. Каждой операции над высказываниями соответствует операция над множествами. Каждому отношению соответствует отношение между множествами истинности.

В нашем случае, если А и В - высказывания, то, например, АВ - также высказывание, и следовательно, оно должно иметь свое множество истинности. Изобразим это множество. Значению истинности переменных А и В в каждой из четырех строк таблицы истинности ставим в соответствие одно из четырех подмножеств на диаграмме Эйлера-Венна (рис.1).

Строки

А

В

Подмножества

истинности

1

1

1

А1∩В1

2

1

0

А1∩ ┐В1

3

0

1

┐А1∩В1

4

1

1

┐А1∩┐В1

Рис 1.

 

Рис.2.

     

Подмножества, соответствующие тем строкам, в которых молекулярное высказывание истинно, заштриховываются. Таким образом, высказыванию АВ ставится в соответствие множество (А1∩┐В1)U(┐А1∩В1), ибо АВ истинно во 2 и 3 строках таблицы, т.е.={10,01}.

Контрольные вопросы

1. Дайте определение тождественно истинной, тождественно ложной и нейтральной формул.

2. В чем состоит проблема минимизации формул?

3. Что называется эквивалентным преобразованием формулы?

4. Перечислите все 15 законов логики высказываний.

5. Назовите законы выражения одних союзов через другие.

6. Как производится упрощение системы высказываний?

Индивидуальные задания

1. Определите, с помощью таблицы истинности, является ли приведенная функция тождественно-истинной, тождественно-ложной или нейтральной.

1) С 11) С    21)  

2) С|  12) С    22)  С

3) С 13) С         23)  С

4) С| 14) С     24)  С

5) С 15) С         25) 

6) С|С  16) С          26)  С 

7) СС 17)СС         27) СС

8) С  18) С       28) С

9)  19) С     29) С

10) С 20) С; 30) С

2.  Для заданной формулы составьте таблицу истинности и интерпретируйте  на диаграммах Эйлера-Венна.

1)   ССВ 11)АС      21) САС

  1.  АССВ 12) СС  22) С
  2.  ССС 13) В        23) АССВ
  3.  С   14) ССА     24) ССА
  4.  С 15) АСС25) АС
  5.  ССА 16) СА26) САС
  6.  АС 17) ВСА   27) СВС

8  СВС 18)ССС     28) С;

     9)  СС 19) СВ     29) ССС

    10) САС 20) ССВ;  30) С|СВ;

3.  Исследуйте,  подчинена ли операция:

1) импликации законам коммутативности, ассоциативности и идемпотентности, т.е. верно ли, что:

1) АВ=ВА; 2) (АВ)С=АС); 3) АА=А.

2) двойная импликация законам коммутативности, ассоциативности и идемпотентности, т.е. верно ли, что:

1) А↔В=В↔А; 2) (А↔В)↔С=А↔(В↔С); 3) А↔А=А.

3) строгая дизъюнкция (эквиваленция) законам коммутативности, ассоциативности и идемпотентности?

4) «штрих Шеффера» и «символ Лукасевича» законам коммутативности, ассоциативности и идемпотентности?

4.  Сформулируйте высказывания, которые по законам де Моргана, выражают то же, что и следующие:

1) Неверно, что треугольник АВС – прямоугольный и равнобедренный; 2) Неверно, что хотя бы одно из чисел а и в - простое;

3) Неверно, что число 9- четное или простое;

4) Неверно, что каждое из чисел m и n чётно.

PAGE  1


А
1       В1  U

     2

    3

  2  


 

А также другие работы, которые могут Вас заинтересовать

33148. Творчество М. М. Фокина. Дягилевские русские сезоны 18.67 KB
  Фокин считал что танец должен выражать душевные переживания действующих лиц что танцевальная часть спектакля должна составлять единое художественное целое с музыкой живописью и пластикой говоря о невозможности ставить балеты на случайную музыку представляющую собой набор вальсов полек и галопов и требовал чтобы музыка выражала те чувства которые передаются движениями танцующих. В 1906 году Фокин поставил для школьного спектакля балет Сон в летнюю ночь на музыку Ф. Для благотворительных вечеров Фокин поставил Виноградную лозу на...
33149. Основные виды хореографического искусства 21.61 KB
  Хореографическое искусство изначально синтетическое музыки усиливается выразительность танца пластически дающей ей эмоциональную ритмическую основу оно не может существовать. Вместе с тем хореография зрительное искусство где существенное значение приобретает не только временная но и пространственная композиция танца зрительный облик танцующих. В плановом обществе произошло разделение танца на народный и профессиональный. Термин классического танца возник в России в конце девятнадцатого века в результате обособления отдельных...
33150. Истоки русского балета 22.28 KB
  Пляска же постепенно развивалась и видоизменяясь послужила основой для создания особого вида театрального искусства – балета. К древнейшим пляскам относятся также охотничьи. Эта пляска моржа у чукчей и немцев пляска медведя у ханты манси и айнов. На Украине сохранилась пляска запорожских казаков Гопак а в Грузии воинский танец Хоруми.
33151. Появление театрального танца в России. Первый публичный театр. Петровские ассамблеи 16.8 KB
  Сводилось к показу бальных танцев в украшенных бытовых одеждах которые исполняли только мужчины. Возникла сложность с актерами исполнителями танцев. Театр не устраивал Петра: отсутствие исполнителей недостаточный интерес широких масс к иноземному искусству непонятность репертуара и формы танцев Петр обратил свое внимание на перевоспитание ближайшего окружения решил что в этом направлении могут помочь танцы. Назывались учителями танцев учтивств и кумплиментов.
33152. Романтический образ Тальони 15.04 KB
  В 1832 году в Парижской Опере был впервые показан балет Филиппо Тальони Сильфида. Этот балет Тальони сочинил для своей дочери знаменитой балерины Марии Тальони. Предполагается что впервые поднялась в танце на пальцы и Мария Тальони.
33153. Методические рекомендации по работе с разными категориями детей. Поддержание дисциплины в отряде 48.5 KB
  Если один взрослый запретил чтолибо а другой разрешил если один сказал: Надо сделать так а второй – Нет подругому это приводит тому что ни один вожатый не имеет авторитета в глазах детей и отряд становится неуправляемым. В лагере педагогам приходится достаточно часто сталкиваться с проблемой агрессивного поведения детей. На разных возрастных этапах проявление агрессивности у детей различно.
33154. КОЛЛЕКТИВНЫЕ ТВОРЧЕСКИЕ ДЕЛА 17 KB
  Тогда ты и сам сможешь придумать дела. малым группам; многое зависит от того кто станет ведущим этого дела; экономь время Времени на подготовку не должно быть много или мало: только в “самый разâ€. Творческая подготовка конкурсов и дел участие в общелагерных делах.
33155. Мозговой штурм. Деловая игра для педагогов 34 KB
  Один из вариантов методики мозгового штурма хорошо знаком нам по любимой не одним поколением телезрителей передаче Что Где Когда. Я думаю что для начинающего психолога мучительно размышляющего над вопросом как ему начать работу с педагогами методика мозгового штурма может стать первым шагом в этом направлении.Хочу предложить один из самых простых вариантов методики мозгового штурма который может быть реализован на педагогическом совете в процессе психологического тренинга учителей или как отдельное специальное мероприятие.
33156. НАЗВАНИЯ ОТРЯДОВ И ДЕВИЗЫ 39.5 KB
  ОбаНа Мы не панки не шпана мы ребята ОбаНа. Обана Обана это чудо Обана это класс мы живем совсем не худо вы соскучитесь без нас.