42422

Нормальные формы формул. Проблема разрешения

Лабораторная работа

Математика и математический анализ

Теорема 1 о приведении к ДНФ: Для любой формулы А можно найти такую формулу В находящуюся в ДНФ что АВ. Формула В называется ДНФ формулы А. Конечно например все ДНФ данной формулы равносильны. Выделим среди ДНФ так называемую совершенную дизъюнктивную нормальную форму формулы.

Русский

2013-10-29

89 KB

11 чел.

Практическое занятие №9

 

Тема: Нормальные формы формул. Проблема разрешения.

Цель работы: овладение  умением приведения булевых функций к ДНФ (СДНФ), КНФ(СКНФ).

Теоретическая часть

В силу ассоциативности операций и как бы мы не расставляли скобки в выражениях  A1&A2&…&Ak,   всегда будем приходить к равносильным формулам. Каждое из этих выражений будем считать формулой, и называть соответственно многочленной конъюнкцией и дизъюнкцией формул .

Канонические виды формул

Определение 1: Формулу называют элементарной конъюнкцией, если она является конъюнкцией переменных и отрицаний переменных.

Пример 1:    .

Определение 2:  Формула находится в дизъюнктивной нормальной форме (ДНФ), если она является дизъюнкцией элементарных конъюнкций.

Пример 2: .

Теорема 1 ( о приведении к ДНФ): Для любой формулы А можно найти такую формулу В, находящуюся в ДНФ, что АВ. Формула В называется ДНФ формулы А.

Аналогично читается теорема для КНФ (конъюнктивной нормальной формы).

Необходимо отметить, что ДНФ и КНФ может быть сколько угодно. Конечно, например все ДНФ данной формулы равносильны. Выделим среди ДНФ  так называемую совершенную дизъюнктивную нормальную форму формулы.

Теорема 2:  Пусть формула А зависит от списка переменных . Говорят, что А находится в совершенной дизъюнктивной нормальной форме (СДНФ) относительно этого списка, если выполняются следующие условия:

  1.  А находится в ДНФ;
  2.  каждый дизъюнктивный член А является – членной конъюнкцией, причём на L – месте

(1L) этой конъюнкции обязательно стоит либо переменная X, либо её отрицание .

  1.  все дизъюнктивные члены А попарно различны.

Теорема 3 (о единственности СДНФ): Если В1 и В2 – совершенные дизъюнктивные нормальные формы формулы А относительно списка переменных , то В1 и В2 могут отличаться только порядком своих дизъюнктивных членов.

Аналогично определяется СКНФ.

СДНФ и СКНФ можно использовать для распознавания равносильности двух формул.

Критерий равносильности: две формулы А1 и А2 зависящие от списка переменных  и не равные тождественно Л (И), равносильны в том и только в том случае, если они приводятся к СДНФ (СКНФ), отличающимся лишь порядком своих дизъюнктивных (конъюнктивных) членов.

Проблемой разрешимости для логики высказываний называют следующую проблему: существует ли такая процедура, которая позволяла бы для произвольной формулы в конечное число шагов определить, является ли она тавтологией?

Решающим методом, во-первых, может служить составление таблицы истинности, которое позволяет всегда, для любой данной формулы, ответить является ли она тавтологией или нет. Он дает принципиальное решение проблемы, но при большом числе переменных таблица истинности становится очень громоздкой.

Второй способ решения основан на приведении формул к нормальной форме применением эквивалентных преобразований. Эта разрешающая процедура позволяет уже по структуре нормальной формы узнать является ли эквивалентная ей исходная формула тавтологией или нет. Приведение данной формулы к ее КНФ и может служить такой разрешающей процедурой.

Действительно, если каждый член КНФ - элементарная дизъюнкция - будет содержать хотя бы одну переменную вместе с ее отрицанием, то эта дизъюнкция получит значение 1, а значит, и вся конъюнкция будет иметь значение 1 при всех наборах значений переменных, т.е. тождественно истинной.

Если же хотя бы один член КНФ не содержит ни одной переменной вместе с ее отрицанием, то конъюнкция не является тождественно истинной, ибо найдется такой набор значений переменных, при котором этот член (элементарная дизъюнкция), а значит и вся конъюнкция имеет значение 0.

Это будет означать, что исходная формула является либо нейтральной, либо противоречием (всегда ложной).

Если из КНФ некоторой формулы можно узнать, является ли она всегда истинной (тавтологией), то ее ДНФ позволяет решить, является ли эта формула всегда ложной (противоречием).

Контрольные вопросы

  1.  Что называется дизъюнктивной нормальной формой булевой функции?
  2.  Дайте определение СДНФ и СКНФ переключательной функции.
  3.  В чем состоит проблема разрешимости для логики высказываний?
  4.  Какие есть разрешающие методы?

Индивидуальные задания

1. Найдите СДНФ  следующих формул, применяя соответствующие эквивалентные преобразования.

  1.  ~D 11) DС      21) СDС
  2.  DС  12) D~   22) DС
  3.  С~D  13) DС        23) СD
  4.  DС~   14)  С~D         24) DСС;
  5.  ~DС    15) DС   25) D~С
  6.  С~D  16) DСС26) DС;
  7.  ~D    17) С~С   27)  С~D;

8  D~С   18) ~DСС    28) DС

     9)  СD   19) СD    29) СD

    10) D~С    20) ~DСD; 30) DС.

2. Формула с тремя переменными имеет таблицу истинности. Какова наиболее простая эквивалентная ей формула?

А

В

С

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

0

0

0

1

1

0

0

1

1

1

1

1

0

0

0

1

0

1

0

1

0

1

1

0

0

0

1

0

1

0

0

0

1

0

0

1

0

1

1

0

0

0

1

1

0

0

0

1

1

0

0

0

0

1

1

1

1

0

1

1

0

0

0

0

0

0

0

1

0

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

1

1

1

1

0

0

0

0

0

0

1

1

0

1

1

0

1

1

0

0

1

1

1

0

0

0

0

0

1

1

1

1

1

1

1

0

0

1

0

1

1

1

1

1

0

1

0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0

1

0

0

0

1

0

1

0

0

1

0

1

1

1

0

0

0

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

1

1

1

1

1

0

0

1

1

0

0

1

1

1

0

1

0

0

0

1

1

1

0

0

1

0

0

1

1

0

1

1

1

1

0

0

0

0

1

1

0

1

1

1

1

0

0

0

1

1

1

0

 

3.  Выпишите СКНФ всякой тождественно ложной формулы, содержащей одну переменную, две переменные, три переменные. Сколько элементарных дизъюнкций содержит СКНФ тождественно ложной формулы, состоящей из n переменных?

4.  Если СДНФ некоторой формулы из четырёх переменных содержит пять членов, то сколько членов содержит СКНФ этой же формулы?

5.  СКНФ некоторой формулы из трёх переменных содержит 6 членов. Какая из двух совершенных нормальных форм этой формулы проще -СДНФ или СКНФ?

6. Определите, какие из данных формул являются тавтологиями, приведя их к КНФ:

  1.  С
  2.  САС
  3.  С

Результаты задачи проверьте при помощи таблиц истинности.

7. Установите, какие из данных формул являются противоречием, приведя каждую из них к ДНФ:

1) (AB)~(A;   2) ((A((A));

3) (AC)C).

Результаты решения проверьте при помощи таблиц истинности.

8. Для каждой из следующих формул определите, является ли она тавтологией или противоречием, или нейтральной приведением формулы к ДНФ и КНФ:

1) (A;

2) ((;

3) CC;

4) ;

5) (( ACC;

6) CCCC.

PAGE  1


 

А также другие работы, которые могут Вас заинтересовать

44956. Индивидуальные и общественные потребности 35 KB
  Индивидуальные и общественные потребности Общество состоит из индивидов имеющих свои биологические особенности – состояние здоровья особенности физиологических процессов в организме различия в строении и функционировании нервной системы которые определяют природные задатки человека. В простейшем случае общественные потребности представляют собой просто сумму потребностей индивидуальных. В более сложных случаях общественные потребности выходят за пределы индивидуальных и не сводятся к их сумме. Томас Гоббс считал что государство необходимо...
44957. Потребности в общении, самореализации, собственности и статусе. Смысл богатства 35.5 KB
  Любой человек будет испытывать дискомфорт когда блокирована его потребность в Познании например когда долгое время нет доступа к новой информации.Потребность в общении Человек испытывает потребность поделиться е другими своими мыслями и чувствами читать газеты книги и журналы смотреть кинофильмы в спектакли слушать музыку и т. Следует особо выделить такую духовную потребность как потребность в общении с другими людьми. Возникшая на заре человеческого общества потребность в общении породившая язык как средство общения была наряду с...
44958. Природа и сущность человека и его потребностей 30.5 KB
  Природа и сущность человека и его потребностей. Понятия природа сущность человека часто употребляются как синонимы. В марксистской системе рассуждения понятие природы соотносилось обычно с биологическим естеством человека в то время как сущность человека усматривалась в его социальности в его общественной природе. В принципе под природой человека подразумеваются стойкие неизменные черты общие задатки и свойства выражающие его особенности как живого существа которые присущи хомо сапиенс во все времена независимо от биологической эволюции...
44959. Сущность человека. Сущность бытия. Основные потребности 35.5 KB
  Основные потребности. Человек удовлетворяет свои потребности посредством труда материального производства. В настоящее время стало ясно что потребности человека постепенно эволюционируют и заметно различаются в разные исторические эпохи. Психологи обычно делят потребности на первичные или насущные без удовлетворения которых человек вообще не может существовать и вторичные ненасущные удовлетворение которых не является обязательным условием физического существования человеческого организма.
44964. Качество установившихся процессов в линейных САУ. Корневые критерии качества 469 KB
  Корневые критерии качества. Совокупность требований определяющих поведение САУ в установившихся и переходных процессах объединяется понятием качества процесса управления. позволяют оценивать показатели качества переходных процессов по косвенным признакам не решая диф. критериями качества переходных процессов.