42422

Нормальные формы формул. Проблема разрешения

Лабораторная работа

Математика и математический анализ

Теорема 1 о приведении к ДНФ: Для любой формулы А можно найти такую формулу В находящуюся в ДНФ что АВ. Формула В называется ДНФ формулы А. Конечно например все ДНФ данной формулы равносильны. Выделим среди ДНФ так называемую совершенную дизъюнктивную нормальную форму формулы.

Русский

2013-10-29

89 KB

11 чел.

Практическое занятие №9

 

Тема: Нормальные формы формул. Проблема разрешения.

Цель работы: овладение  умением приведения булевых функций к ДНФ (СДНФ), КНФ(СКНФ).

Теоретическая часть

В силу ассоциативности операций и как бы мы не расставляли скобки в выражениях  A1&A2&…&Ak,   всегда будем приходить к равносильным формулам. Каждое из этих выражений будем считать формулой, и называть соответственно многочленной конъюнкцией и дизъюнкцией формул .

Канонические виды формул

Определение 1: Формулу называют элементарной конъюнкцией, если она является конъюнкцией переменных и отрицаний переменных.

Пример 1:    .

Определение 2:  Формула находится в дизъюнктивной нормальной форме (ДНФ), если она является дизъюнкцией элементарных конъюнкций.

Пример 2: .

Теорема 1 ( о приведении к ДНФ): Для любой формулы А можно найти такую формулу В, находящуюся в ДНФ, что АВ. Формула В называется ДНФ формулы А.

Аналогично читается теорема для КНФ (конъюнктивной нормальной формы).

Необходимо отметить, что ДНФ и КНФ может быть сколько угодно. Конечно, например все ДНФ данной формулы равносильны. Выделим среди ДНФ  так называемую совершенную дизъюнктивную нормальную форму формулы.

Теорема 2:  Пусть формула А зависит от списка переменных . Говорят, что А находится в совершенной дизъюнктивной нормальной форме (СДНФ) относительно этого списка, если выполняются следующие условия:

  1.  А находится в ДНФ;
  2.  каждый дизъюнктивный член А является – членной конъюнкцией, причём на L – месте

(1L) этой конъюнкции обязательно стоит либо переменная X, либо её отрицание .

  1.  все дизъюнктивные члены А попарно различны.

Теорема 3 (о единственности СДНФ): Если В1 и В2 – совершенные дизъюнктивные нормальные формы формулы А относительно списка переменных , то В1 и В2 могут отличаться только порядком своих дизъюнктивных членов.

Аналогично определяется СКНФ.

СДНФ и СКНФ можно использовать для распознавания равносильности двух формул.

Критерий равносильности: две формулы А1 и А2 зависящие от списка переменных  и не равные тождественно Л (И), равносильны в том и только в том случае, если они приводятся к СДНФ (СКНФ), отличающимся лишь порядком своих дизъюнктивных (конъюнктивных) членов.

Проблемой разрешимости для логики высказываний называют следующую проблему: существует ли такая процедура, которая позволяла бы для произвольной формулы в конечное число шагов определить, является ли она тавтологией?

Решающим методом, во-первых, может служить составление таблицы истинности, которое позволяет всегда, для любой данной формулы, ответить является ли она тавтологией или нет. Он дает принципиальное решение проблемы, но при большом числе переменных таблица истинности становится очень громоздкой.

Второй способ решения основан на приведении формул к нормальной форме применением эквивалентных преобразований. Эта разрешающая процедура позволяет уже по структуре нормальной формы узнать является ли эквивалентная ей исходная формула тавтологией или нет. Приведение данной формулы к ее КНФ и может служить такой разрешающей процедурой.

Действительно, если каждый член КНФ - элементарная дизъюнкция - будет содержать хотя бы одну переменную вместе с ее отрицанием, то эта дизъюнкция получит значение 1, а значит, и вся конъюнкция будет иметь значение 1 при всех наборах значений переменных, т.е. тождественно истинной.

Если же хотя бы один член КНФ не содержит ни одной переменной вместе с ее отрицанием, то конъюнкция не является тождественно истинной, ибо найдется такой набор значений переменных, при котором этот член (элементарная дизъюнкция), а значит и вся конъюнкция имеет значение 0.

Это будет означать, что исходная формула является либо нейтральной, либо противоречием (всегда ложной).

Если из КНФ некоторой формулы можно узнать, является ли она всегда истинной (тавтологией), то ее ДНФ позволяет решить, является ли эта формула всегда ложной (противоречием).

Контрольные вопросы

  1.  Что называется дизъюнктивной нормальной формой булевой функции?
  2.  Дайте определение СДНФ и СКНФ переключательной функции.
  3.  В чем состоит проблема разрешимости для логики высказываний?
  4.  Какие есть разрешающие методы?

Индивидуальные задания

1. Найдите СДНФ  следующих формул, применяя соответствующие эквивалентные преобразования.

  1.  ~D 11) DС      21) СDС
  2.  DС  12) D~   22) DС
  3.  С~D  13) DС        23) СD
  4.  DС~   14)  С~D         24) DСС;
  5.  ~DС    15) DС   25) D~С
  6.  С~D  16) DСС26) DС;
  7.  ~D    17) С~С   27)  С~D;

8  D~С   18) ~DСС    28) DС

     9)  СD   19) СD    29) СD

    10) D~С    20) ~DСD; 30) DС.

2. Формула с тремя переменными имеет таблицу истинности. Какова наиболее простая эквивалентная ей формула?

А

В

С

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

0

0

0

1

1

0

0

1

1

1

1

1

0

0

0

1

0

1

0

1

0

1

1

0

0

0

1

0

1

0

0

0

1

0

0

1

0

1

1

0

0

0

1

1

0

0

0

1

1

0

0

0

0

1

1

1

1

0

1

1

0

0

0

0

0

0

0

1

0

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

1

1

1

1

0

0

0

0

0

0

1

1

0

1

1

0

1

1

0

0

1

1

1

0

0

0

0

0

1

1

1

1

1

1

1

0

0

1

0

1

1

1

1

1

0

1

0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0

1

0

0

0

1

0

1

0

0

1

0

1

1

1

0

0

0

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

1

1

1

1

1

0

0

1

1

0

0

1

1

1

0

1

0

0

0

1

1

1

0

0

1

0

0

1

1

0

1

1

1

1

0

0

0

0

1

1

0

1

1

1

1

0

0

0

1

1

1

0

 

3.  Выпишите СКНФ всякой тождественно ложной формулы, содержащей одну переменную, две переменные, три переменные. Сколько элементарных дизъюнкций содержит СКНФ тождественно ложной формулы, состоящей из n переменных?

4.  Если СДНФ некоторой формулы из четырёх переменных содержит пять членов, то сколько членов содержит СКНФ этой же формулы?

5.  СКНФ некоторой формулы из трёх переменных содержит 6 членов. Какая из двух совершенных нормальных форм этой формулы проще -СДНФ или СКНФ?

6. Определите, какие из данных формул являются тавтологиями, приведя их к КНФ:

  1.  С
  2.  САС
  3.  С

Результаты задачи проверьте при помощи таблиц истинности.

7. Установите, какие из данных формул являются противоречием, приведя каждую из них к ДНФ:

1) (AB)~(A;   2) ((A((A));

3) (AC)C).

Результаты решения проверьте при помощи таблиц истинности.

8. Для каждой из следующих формул определите, является ли она тавтологией или противоречием, или нейтральной приведением формулы к ДНФ и КНФ:

1) (A;

2) ((;

3) CC;

4) ;

5) (( ACC;

6) CCCC.

PAGE  1


 

А также другие работы, которые могут Вас заинтересовать

43732. Экономический анализ проведенных проектных работ и их внедрение в условиях предприятия ООО «Агрохмель» 12.55 MB
  Климат хозяйства характеризуется умеренно-прохладным. Солнечных дней в году около 110. Среднегодовая температура воздуха положительная и равна +2,2 градуса Среднегодовое количество осадков 427 мм, а во время вегетационного периода 300-390мм. Почвы в среднем промерзают на 63 см.
43733. Оптимізація виробництва деталі маточина переднього колеса 399.47 KB
  Опис призначення й умов роботи деталі. Хімічний склад механічні властивості матеріалу деталі. Аналіз технологічності деталі. Проектування маршрутного технологічного процесу виготовлення деталі.
43735. Создании базы данных для построения крепёжных деталей 3.34 MB
  Исходное информационное обеспечение. Обеспечить пользователя необходимой информацией о крепёжных деталях. Решение: Использование формы в которых будет содержаться необходимая информация о крепежных элементах. Создать программу которая позволила бы обрабатывать сортировать и изменять информацию о крепёжных элементах.
43736. Реализация базы данных центра занятости 587.17 KB
  С чисто практической точки зрения базы данных позволяют избавиться от большого количества бумажных документов и значительно ускорить поиск и внесение информации. Цель данного курсового проекта реализация базы данных центра занятости. Для выполнения работ в базе данных необходима авторизация с помощью пары...
43737. Система управління складським обліком продовольчих товарів 24.23 MB
  Завдяки використанню топології складських приміщень, система наочно відображає завантаженість товаром осередків та стелажів Грамотна організація роботи підприємств складського комплексу веде до підвищення продуктивності праці, скорочує витрати робочого часу на виконання складських операцій і дозволяє ефективно використовувати складські приміщення. Все це сприяє підвищенню економічної ефективності підприємства.
43738. Обґрунтування роздільної технології збирання льону-довгунця з використанням льонопідбирача-молотарки ПМЛ-1 в Інституті луб’яних культур 1.64 MB
  Первинна очистка насіння здійснюеться на чотирьох машинах ОВС-25, великі партії насіння до посівних кондицій доробляються на двох лініях, одна з яких змонтована з послідовно підключених Петкусі-Гігантів, друга являе з себе комплекс КЗС-40, переобладнаний зерноочисними машинами фірми “Петкус”. Доробка машин малих парків насіння здійснюется на чотирьох Петкус-Суперах і одному Петкус-Гіганті.
43739. Исследование торговой деятельности малых предприятий розничной торговли продовольственными товарами магазина ООО «Эклар» 329.68 KB
  Организация малого предпринимательства в сфере торговли Понятие малого предпринимательства и этапы его развития Формы государственной поддержки малого предпринимательства Организация торговой деятельности малого предприятия в розничной торговле на примере ООО Эклар.
43740. Определение способов модернизации системы управления сбытом в ООО «Шебекинcкий Картон» 519.4 KB
  Комплекс мероприятий решений и действий по формированию ассортимента выпускаемой продукции и ценообразованию по формированию спроса и стимулированию сбыта реклама обслуживание покупателей коммерческое кредитование скидки заключению договоров продажи поставки товаров товародвижению транспортировке по инкассации дебиторской задолженности организационным материально-техническим и прочим аспектам сбыта. Таким образом в хозяйственной деятельности организации одним из основных вопросов являются сбыт реализация готовой...