42426

Нечёткие множества

Лабораторная работа

Математика и математический анализ

Стандартное четкое множество строится на основе математической конструкции отсеивающей из универсального множества некоторую часть его элементов. То есть фактически любое множество определяется этим самым свойством или набором свойств S и объединяет некоторое количество не обязательно конечное счетное элементов обладающих свойством S. А теперь давайте попробуем из всей бесконечности всего в нашей Вселенной в которой очевидно есть место и для таких объектов как вода и стаканы сформировать множество на основе вполне понятного...

Русский

2013-10-29

218 KB

45 чел.

Практическое занятие №16

Тема: Нечёткие множества

Цель работы: изучить основные операции над нечёткими множествами, научиться применять их для решения практических задач.

Теоретическая часть

Наверное, самым впечатляющим у человеческого интеллекта является способность принимать правильные решения в условиях неполной и нечеткой информации. Построение моделей приближенных размышлений человека и использование их в компьютерных системах представляет сегодня одну из важнейших проблем науки.

Стандартное "четкое" множество строится на основе математической конструкции, "отсеивающей" из "универсального множества" некоторую часть его элементов. За "отсев" отвечает так называемая характеристическая функция, значение которой для каждого элемента универсального множества может принимать строго одно из двух возможных значений: 1 или 0. Формального описания "характеристической функции вообще" в математических терминах не существует, о ней принято говорить естественным языком примерно так: если элемент универсального множества обладает свойством S, то характеристическая функция для этого элемента равна 1, в противном случае ее значение 0. То есть фактически любое множество определяется этим самым свойством (или набором свойств) S и объединяет некоторое количество (не обязательно конечное, счетное) элементов, обладающих свойством S. Четкость классических множеств заключается в строгой определенности значений характеристической функции элемент или строго определенно принадлежит множеству (характеристическая функция равна 1) или строго определенно не принадлежит ему (характеристическая функция 0). И такая определенность очень долго устраивала специалистов по теоретической и прикладной математике.
А теперь давайте попробуем из всей бесконечности "всего" в нашей Вселенной, в которой, очевидно, есть место и для таких объектов, как "вода" и "стаканы", сформировать множество на основе вполне понятного человеку свойства S, определенного словами "стакан воды". Стакан, до краев наполненный водой, очевидно, удовлетворяет этому свойству
и характеристическая функция для такого элемента множества будет равна единице. А какое значение должна принимать характеристическая функция, если стакан наполнен водой на две трети? А если наполовину? А если стакан наполнен водой всего на треть он еще "стакан воды" или уже не совсем?

Этот "парадокс стакана воды" на самом деле не иллюстрирует ничего другого, кроме специфики формирования характеристической функции. Люди понимают (или умеют понимать) неформально определенные свойства вроде "стакана воды", "среднего возраста", "небольшого роста". Машинные (традиционные вычислительные) алгоритмы же, напротив, оперируют строгими значениями: "123 миллилитра", "34 года", "163 сантиметра". Именно эти отличия в свое время провоцировали модные рассуждения об ЭВМ пятого поколения на основе нечеткой логики, которым, дескать, суждено стать вычислительной основой искусственного интеллекта.

Основные определения

Нечёткое множество — понятие, расширяющее классическое понятие множества, допускающее, что характеристическая функция (функция принадлежности элемента множеству) может принимать любые значения в интервале [0,1], а не только значения 0 или 1.

Определение: Под нечётким множеством  понимается совокупность , где — универсальное множество, а — функция принадлежности (характеристическая функция), характеризующая степень принадлежности элемента  нечёткому множеству .

Функция  принимает значения в некотором вполне упорядоченном множестве . Множество  называют множеством принадлежностей, часто в качестве  выбирается отрезок . Если , то нечёткое множество может рассматриваться как обычное, чёткое множество.

Пример: Рассмотрим как с помощью нечеткого множества определить выражение "он еще молодой".  Для наглядности приведем характеристическую функцию множества молодых людей.

Пусть E = {x1, x2, x3, x4, x5 }, M = [0,1]; A - нечеткое множество, для которого mA(x1)=0,3; mA(x2)=0; mA(x3)=1; mA(x4)=0,5; mA(x5)=0,9. Тогда A можно представить в виде:

A = {0,3/x1; 0/x2; 1/x3; 0,5/x4; 0,9/x5 } или A = 0,3/x1 + 0/x2 + 1/x3 + 0,5/x4 + 0,9/x5, (знак "+" является операцией не сложения, а объединения) или

 

x1

x2

x3

x4

x5

A =

0,3

0

1

0,5

0,9

Основные характеристики нечетких множеств

Пусть  нечёткое множество с элементами из универсального множества и множеством принадлежностей . Тогда Носителем (суппортом) нечёткого множества   называется множество .

1. Величина   называется высотой нечёткого множества .

2. Нечёткое множество  нормально, если его высота равна .

3. Если высота строго меньше , нечёткое множество называется субнормальным.

4. Нечёткое множество пусто, если .

5. Непустое субнормальное нечёткое множество можно нормализовать по формуле:  .

6. Нечёткое множество унимодально, если   только на одном   из .

7. Элементы , для которых , называются точками перехода нечёткого множества .

Операции над нечеткими множествами

Пусть A и B - нечеткие множества на универсальном множестве E. Говорят, что A содержится в B, если "x ÎE mA(x) <mB(x). Обозначение: A Ì B.

Иногда используют термин "доминирование", то есть в случае если A Ì B, говорят, что B доминирует A.

Равенство: A и B равны, если "xÎE mA(x) = mB (x). Обозначение: A = B.

Дополнение: Отрицанием множества  при   называется множество с функцией принадлежности:    для каждого .

Пересечение: Пересечением нечётких множеств A и B называется наибольшее нечёткое подмножество, содержащееся одновременно в A и B:

Объединение: Объединением нечётких множеств A и B называется наименьшее нечёткое подмножество, содержащее одновременно A и B:

.

Разность: А - B = АÇ с функцией принадлежности: 

mA-B(x) = mA Ç (x) = min( mA(x), 1 - m B(x)).

Дизъюнктивная сумма: АÅB = (А - B)È(B - А) = (А Ç ) È( Ç B) с функцией принадлежности:

mA-B(x) = max{[min{m A(x), 1 - mB(x)}];[min{1 - mA(x), mB(x)}] }.

Произведение: Произведением нечётких множеств A и B называется нечёткое подмножество с функцией принадлежности:

Сумма: Суммой нечётких множеств A и B называется нечёткое подмножество с функцией принадлежности:

Примеры

Пусть:

A = 0,4/ x1 + 0,2/ x2+0/ x3+1/ x4;

B = 0,7/ x1+0,9/ x2+0,1/ x3+1/ x4;

C = 0,1/ x1+1/ x2+0,2/ x3+0,9/ x4.

Здесь:

1. AÌB, то есть A содержится в B или B доминирует A, С несравнимо ни с A, ни с B, то есть пари {A, С} и {A, С} - пары недоминируемых нечетких множеств.

2.  A ¹ B ¹C.

3. = 0,6/ x1 + 0,8/x2 + 1/x3 + 0/x4; = 0,3/x1 + 0,1/x2 + 0,9/x3 + 0/x4.

4. AÇB = 0,4/x1 + 0,2/x2 + 0/x3 + 1/x4.

5. АÈС = 0,7/x1 + 0,9/x2 + 0,1/x3 + 1/x4.

6. А - В = АÇ = 0,3/x1 + 0,1/x2 + 0/x3 + 0/x4;

   В - А = Ç В = 0,6/x1 + 0,8/x2 + 0,1/x3 + 0/x4.

7. А Å В = 0,6/x1 + 0,8/x2 + 0,1/x3 + 0/x4.

Наглядное представление операций над нечеткими множествами

Для нечетких множеств можно применить визуальное представление. Рассмотрим прямоугольную систему координат, на оси ординат которой откладываются значение mA(x), на оси абсцисс в произвольном порядке расположены элементы E. Если E по своей природе упорядочено, то этот порядок желательно сохранить в расположении элементов на оси абсцисс. Такое представление делает наглядными простые операции над нечеткими множествами.

Пусть A нечеткий интервал между 5 до 8 и B нечеткое число около 4, как показано на рисунке.

Проиллюстрируем нечеткое множество между 5 и 8 И (AND) около 4 (синяя линия).

Нечеткое множество между 5 и 8 ИЛИ (OR) около 4 показано на следующем рисунке (снова синяя линия).

Следующий рисунок иллюстрирует операцию отрицания. Синяя линия - это ОТРИЦАНИЕ нечеткого множества A.

На следующем рисунке заштрихованная часть соответствует нечеткому множеству A и изображает область значений А и всех нечетких множеств, содержащихся в A. Остальные рисунки изображают соответственно , AÇ, AÈ.

Свойства операций È і Ç

Пусть А, В, С - нечеткие множества, тогда выполняются следующие свойства:

  •  - коммутативность;
  •  - ассоциативность;
  •  - идемпотентность;
  •  - дистрибутивность;
  •  AÈÆ = A, где Æ - пустое множество, то есть mÆ(x) = 0 "xÎE;
  •  AÇÆ = Æ;
  •  AÇE = A, где E - универсальное множество;
  •  AÈE = E;
  •  - теоремы де Моргана.

В отличие от четких множеств, для нечетких множеств в общем случае:Aǹ Æ, Aȹ E.

Умножение на число

Если a - положительное число, такое, что a m A(x)£1, тогда нечеткое множество A имеет функцию принадлежности: maA(x) = amA(x).

Сравнение нечётких множеств

Пусть A и B нечёткие множества, заданные на универсальном множестве X.

A содержится в B, если для любого элемента из X функция его принадлежности множеству A будет принимать значение меньшее либо равное, чем функция принадлежности множеству B:

В случае, если условие выполняется не для всех , говорят о степени включения нечёткого множества A в B, которое определяется так:   где

Два множества называются равными, если они содержатся друг в друге:

В случае, если значения функций принадлежности   и   почти равны между собой, говорят о степени равенства нечётких множеств A и B, например, в виде

где  

Свойства нечётких множеств

α-разрезом нечёткого множества , обозначаемым как , называется следующее чёткое множество:   

то есть множество, определяемое следующей характеристической функцией (функцией принадлежности):  

Для α-разреза нечёткого множества истинна импликация

Нечёткое множество  является выпуклым тогда и только тогда, когда выполняется условие

для любых и .

Нечёткое множество является вогнутым тогда и только тогда, когда выполняется условие

для любых и .

Контрольные вопросы

  1.  Обоснуйте появление теории нечётких множеств. Что явилось её истоками?
  2.  Что такое нечёткое множество?
  3.  Какие виды функции принадлежности вы знаете?
  4.  Объясните основные операции в алгебре  нечётких множеств.
  5.  Какое нечёткое множество называется нормальным, а какое субнормальным? Можно ли привести субнормальное множество к нормальному множеству и как?
  6.  Дайте определение понятию «уровень α».
  7.  Проанализируйте соотношение основных операций в булевой алгебре и в алгебре нечётких множеств.

Индивидуальные задания

  1.  Пусть в универсальном множестве Х={x1,…, xn} определены два нечётких множества А и В, и для каждого из них определёны уровни α и β.
    1.  Что будет нечётким множеством уровня α и β?
    2.  Постройте, для основных операций над  нечёткими множествами, их графическое представление.

А

x1

x2

x3

x4

x5

В

x1

x2

x3

x4

x5

α

β

1

0,1

0,2

0,6

0

1

0

0,5

0,2

0,1

1

0,6

0,4

2

0,8

0

0,7

0,2

1

0,6

0,4

0

0,3

0,8

0,4

0,3

3

0

0,6

0,4

1

0,1

1

0,8

1

0,6

0,3

0,8

0,7

4

0,9

0,1

0,6

0

0,5

0

0,1

0,4

0,2

1

0,3

0,6

5

0,5

0,1

0

1

0

0,4

0,9

0,3

0,2

0

0,7

0,8

6

0,9

0,3

1

0,3

0,5

1

0

1

0,4

0,7

0,5

0,6

7

0,1

0,5

0,3

0,4

1

0,5

0,2

0,6

0,7

0,3

0,9

0,5

8

0,2

0,5

0,4

0

0,3

0,1

0,7

0,6

1

0,3

0,3

0,4

9

0,3

0,1

0,3

0

1

0,5

1

0,4

0,7

0

0,2

0,9

10

0,2

0,6

0,1

0,3

0

1

0,8

0,9

0,1

0

0,4

0,7

PAGE  1


 

А также другие работы, которые могут Вас заинтересовать

27663. Понятие и признаки объективной стороны преступления. Понятие уголовно-наказуемого действия и бездействия. Понятие и виды общественно-опасных последствий. Значение объективной стороны 43 KB
  Объективная сторона преступления это основной элемент состава преступления характеризующийся как внешнее проявление общественно опасного посягательства протекающего в определенных условиях месте и времени и причинившего вред охраняемым уголовным законом общественным отношениям. При анализе объективной стороны различают следующие признаки: 1 общественно опасное деяние в форме действия или бездействия; 2 общественно опасное последствие; 3 причинная связь между деянием и последствием; 4 место время способ обстановка орудия и...
27665. Понятие и признаки покушения на преступление. Виды покушения и их наказуемость. Добровольный отказ от преступления и его признаки. Отличие добровольного отказа от деятельного раскаяния 42.5 KB
  Добровольный отказ от преступления и его признаки. непосредственно направленные на совершение преступления если при этом преступление не было доведено до конца по не зависящим от этого лица обстоятельствам. Оконченным считается такое покушение когда виновный совершил все действия бездействия которые он считал необходимыми для завершения преступления однако преступный результат не наступил по объективным т. Неоконченное преступление бывает в том случае когда виновный не совершил всех тех действий бездействия которые по его...
27666. Понятие и признаки разбоя (ст. 162 УК). Характер физического и психического насилия при разбойном нападении. Отличие разбоя от насильственного грабежа 40 KB
  Это преступление посягает на два объекта: собственность и личность жизнь и здоровье потерпевшего. Нападение это агрессивные и внезапные для потерпевшего действия виновного соединенные с насилием или угрозой его применения; к нападению относятся не только открытые насильственные действия но также и нанесение удара сзади выстрел из засады приведение потерпевшего в бессознательное состояние путем применения опасных для жизни и здоровья сильнодействующих ядовитых или одурманивающих веществ и др. Поэтому как разбой оцениваются случаи...
27667. Понятие и признаки совокупности преступлений. Идеальная и реальная совокупность преступлений, ее отличие от единичных сложных преступлений 30.5 KB
  Понятие и признаки совокупности преступлений. Идеальная и реальная совокупность преступлений ее отличие от единичных сложных преступлений. Совокупность преступлений это совершение двух или более преступлений ни за одно из которых лицо не было осуждено. При совокупности преступлений лицо несет уголовную ответственность за каждое совершенное преступление по соответствующей статье или части статьи Уголовного кодекса ч.
27668. Понятие и признаки хищения чужого имущества. Отличие хищения от других видов посягательств на собственность. Формы и виды хищений. Общие квалифицирующие признаки хищения 33.5 KB
  Хищение – это совершенное с корыстной целью противоправное безвозмездное изъятие и или обращение чужого имущества в пользу виновного или других лиц причинившие ущерб собственнику или иному владельцу этого имущества. Признаки: а предмет хищения только имущество обладающее признаками вещи и имеющие стоимость; предмет хищения всегда материален; б сложный характер: сначала изъятие а затем обращение в пользу виновного изъятиеэто противоправное извлечение виновным имущества из обладания собственника с одновременным его обращением в свое...
27670. Понятие и социальная сущность преступления. Признаки преступления и его отличие от других правонарушений. Категории преступлений по УК РФ. Уголовно-правовое значение классификации преступлений на различные категории тяжести 35 KB
  Понятие и социальная сущность преступления. Признаки преступления и его отличие от других правонарушений. Понятие преступления ст. Признаки преступления: а общественная опасность – это свойство человеческого поступка причинить существенный вред охраняемым законом общечеловеческим ценностям а также создать угрозу такого вреда.