42435

ИЗУЧЕНИЕ ЗАКОНОВ ДВИЖЕНИЯ ЭЛЕКТРОНА В ЭЛЕКТРИЧЕСКОМ И МАГНИТНОМ ПОЛЯХ

Лабораторная работа

Физика

Начальные скорости электронов эмиссии различны. Это сказывается на характере спада анодного тока. Из-за неодинаковости начальных скоростей электронов радиусы кривизны их траекторий при одних и тех же величинах индукции магнитного поля различны. Поэтому резкий спад анодного тока происходит не при одном значении, а в достаточно широком интервале значений магнитной индукции.

Русский

2013-10-29

279.5 KB

32 чел.

PAGE  5

Московский государственный университет

путей сообщения РФ (МИИТ)

Кафедра «Физика-2»

Институт, группа ИСУТЭ АЭЛ-141  К работе допущен____________________

        (Дата, подпись преподавателя)

Студент       Касимова Р.Г.        Работа выполнена___________________

 (ФИО студента)      (Дата, подпись преподавателя)

Преподаватель                          Отчёт принят_______________________          (Дата, подпись преподавателя)

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №22

ИЗУЧЕНИЕ ЗАКОНОВ ДВИЖЕНИЯ ЭЛЕКТРОНА В ЭЛЕКТРИЧЕСКОМ И МАГНИТНОМ ПОЛЯХ

  1.  Цель работы:

 Определение опытным и расчетным путем индукции магнитного поля на оси соленоида с помощью законов движения электрона в электрическом и магнитном полях.

2. Принципиальная схема установки (или её главных узлов):

                       Анод

    Подписи к рис. 2.

                                                          С - соленоид, служащий для создания магнитного поля;

А - амперметр - для измерения тока соленоида;

Va- вольтметр - для измерения анодного напряжения;

П - потенциометр - для регулирования анодного напряжения;

мА - миллиамперметр - для измерения анодного тока лампы 

           Рис. 1

Рис.2
3. Основные теоретические положения к данной работе
(основополагающие утверждения: формулы, схематические рисунки):

Данная работа посвящена изучению движения электронов, которое происходит в кольцевом пространстве, заключенном между катодом и анодом электровакуумного диода. Катод лампы, имеющий форму длинной нити, располагается вдоль оси цилиндрического анода, так что электрическое поле между анодом и катодом имеет радиальный характер.

Лампа помещается внутри соленоида, создающего однородное магнитное поле, параллельное оси анода. При этом между анодом и катодом вектор индукции магнитного поля перпендикулярен вектору напряженности электрического поля.

В отсутствие внешнего магнитного поля (B=0) электроны движутся к аноду по радиусам. Под действием магнитного поля траектории искривляются, при этом радиусы кривизны траектории зависят от их скорости. В слабом магнитном поле это искривление незначительно, электроны попадают на анод, и анодный ток имеет такое же значение, как и в отсутствие магнитного поля. При некотором критическом значении индукции магнитного поля В траектории электронов касаются поверхности анода, анодный ток резко падает. При В>Вkp электроны нe достигают анода и ток через лампу прекращается.

Как видно из рисунка, каждая из трaекторий электрона имеет непостоянную кривизну, что обусловлено его движением от катода к аноду с переменной скоростью.

Начальные скорости электронов эмиссии различны. Это сказывается на характере спада анодного тока. Из-за неодинаковости начальных скоростей электронов радиусы кривизны их траекторий при одних и тех же величинах индукции магнитного поля различны. Поэтому резкий спад анодного тока происходит не при одном значении, а в достаточно широком интервале значений магнитной индукции. Сглаживание кривой, изображающей зависимость анодного тока от величины магнитной индукции, может быть вызвано также неполной коаксиальностью анода и катода и неточностью ориентирования внешнего магнитного поля относительно оси катода.

Эксперимент заключается в том, что при заданном напряжении между анодом и катодом лампы фиксируется ее анодный ток при различных значениях индукции магнитного поля на оси соленоида. Результаты этих измерений позволяют определить критическое значение магнитной индукции, при котором величина анодного тока резко падает.

Считая соленоид бесконечно длинным, можно полагать, что величина индукции магнитного поля в соленоиде B прямо пропорциональна силе тока Ic текущего в его обмотке,

                                          

(1)

где К - коэффициент, зависящий от конструкции соленоида. Тогда из графика зависимости Ia=f(Ic) определяется значение тока соленоида, соответствующего критическому режиму Ic kp, а затем из формулы (1) вычисляется значение Bkp (коэффициент К указан на стенде).

Значение Вkp, можно получить и расчетным путем. На электрон, движущийся в однородном магнитном поле, действует сила Лоренца:

(2)

модуль которой

 

(3)

где е - модуль заряда, V - скорость электрона, В - индукция магнитного поля, α - угол между направлениями векторов V и В.

В рассматриваемом случае векторы V  и В взаимно перпендикулярны и величина силы Лоренца равна

(4)

Будучи перпендикулярной вектору скорости электрона в любой точке траектории, эта сила является центростремительной. Тогда уравнение движения электрона имеет вид

(5)

где    m - масса 'электрона,

         r - радиус кривизны его траектории.


Из формулы (5) следует, что

(6)

В критическом режиме радиус кривизны траектории электрона приближенно можно считать равным половине радиуса анода

(7)

При движении электрона между анодом и катодом лампы электрическое электрическое поле совершает работу, которая идет на увеличение кинетической энергии электрона. Пренебрегая начальными скоростями электронов, имеем

(8)

где  Uа - анодное напряжение.

Тогда, учитывая соотношения (1), (6)-(8), получаем следующее выражение для вычисления критического значения индукции магнитного поля

 (9)

Эта величина сравнивается со значением Вкр, полученным экспериментально, и по их совпадению судят о правильности выбранных исходных положений, использованных для описания движения электронов во взаимноперпендикулярных электрическом и магнитном полях, а также о работоспособности экспериментальной установки.


4. Таблицы и графики

Таблица 1. Результаты измерений.

Ua1

Ua2

Ua3

Ic,A

Ic,A

Ic,A

1

2

3

4

5

6

7

8

9

10

Таблица 2. Результаты вычислений.

 

Эксперементальные

Теоретические

Ua (B)

Ic кр (A)

Вкр (Тл)

Ic кр (A)

Вкр (Тл)


EMBED Equation.3  

EMBED Equation.3  


 

А также другие работы, которые могут Вас заинтересовать

23099. Явище обертання площини поляризації падаючого світла в речовинах 96 KB
  Явище обертання площини поляризації падаючого світла в речовинах. Якщо лінійно поляризоване світло проходить через плоскопаралельний шар речовини то в деяких випадках площина поляризації світла виявляється повернутою відносно свого вихідного положення. Це явище називається обертанням площини поляризації або оптичною активністю. Кут поворота площини поляризації залежить від довжини хвилі.
23100. Квантування енергії лінійного гармонічного осцилятора 202.5 KB
  Тоді гамільтоніан для такої системи буде: Класичний гармонічний осцилятор має розвязки: і де А амплітуда ω частота δ початкова фаза коливань. Перетворимо це рівняння введемо безрозмірні величини та З урахуванням останнього рівняння Шредігера перепишеться як 1 Асимптотична поведінка розвязку рівняння 1 при х→∞: Тоді 2 причому uzобмежена на нескінченності. Шукаючи розвязок у вигляді степеневого ряду знаходимо рекурентну формулу для коефіцієнтів ряду: Розвязки можуть бути або парними або непарними тобто або...
23101. Хвилі де Бройля. Хвильові властивості частинок 5.03 MB
  Хвилі де Бройля. Тобто інколи відбувається прояв як хвилі інколи як частинки. Тоді можна отримати вираз для хвилі де Бройля. Оберемо напрям вздовж за напрям розповсюдження хвилі де фаза хвилі що пересувається у просторі з фазовою швидкістю що шукається з умови що переміщується так щоб фаза залишалась постійною.
23102. Принципова схема лазера. Властивості лазерного випромінювання. Типи лазерів та їх застосування 51.5 KB
  При падінні хвилі з власною частотою переходу системи: змінюються заселеності рівнів N1 i N2 кількість атомів в одиниці обєму що знаходяться на 1 та на 2 енергетичних рівнях відповідно. dN12=BN1dt ; кількість частинок що перейшли з 1 рівня на 2 dN21= AN2dt BN2dt кількість частинок що перейшли з 2 рівня на 1 де Акоеф. Крім того в стаціонарному режимі при умові термодинамічної рівноваги виконуються рівняння: N1N2=N=const кількість частинок в системі є сталою. В дворівневій системі не можна забезпечити умову N2 N1 бо навіть в...
23103. Рівняння Шредингера. Інтерпретація хвильової функції 49 KB
  Рівняння Шредингера. Для цього необхідне рівняння: 1. Рівняння повинно бути лінійним і однорідним хвиля задовольняє принц. Це рівняння Шредингера.
23104. Співвідношення невизначеності Гейзенберга, приклади його проявів 74.5 KB
  Нехай стан частинки опивується хв. Остаточно Співвідношення невизначеностей проявляється при будьякій спробі вимірювання точного положення або точного імпульса частинки. Виявляється що уточнення положення частинки впливає на те що збільшується неточність в значенні імпульса і навпаки. Часто втрачає зміст ділення повної енегрії частинкияк квантового обєкту на потенціальну і кінетичну .
23105. Сестринский процесс при холециститах 25.25 MB
  Воспаление желчного пузыря регистрируется почти у 10% населения планеты, причем в 3-4 раза чаще холециститом страдают женщины. Большинство людей не следят за своим рационом, ведут сидячий образ жизни.
23106. Теорія молекули водню. Обмінна взаємодія 371 KB
  Оскільки гамільтоніан не залежить від спінових змінних то хвильова функція зображається добутком спінової функції на просторову . За допомогою хвильової функції знаходимо середнє значення повного гамільтоніана системи: де кулонівський інтеграл К характаризує ел. наближені хвильові функції Кулонівський інтеґрал К є малим числом і головну роль відіграє обмінний інтеґрал який у ділянці малих є додатною величиною а при змінює знак. Таким чином для симетричної просторової функції є можливим зв'язаний стан системи і теорія...
23107. Прискорювачі заряджених частинок та принципи їх роботи 62.5 KB
  При непрямих методах прискорення електричне поле індукується змінним магнітним полем або використовується змінне електричне поле у вигляді біжучих або стоячих хвиль. Ідея прискорення заряджених частинок електричним полем яке породжується змінним магнітним полем. Основна складова потужний електромагніт обмотка якого живиться змінним струмом з частотою сотні МГц. При зміні маг потока зявляється вихрове ел поле і на кожний електрон в камері діє сила eE.