42491

Измерение сопротивления методом вольтметра-амперметра

Лабораторная работа

Физика

Искомое сопротивление в этом случае 6.1 где U − напряжение которое показывает вольтметр; U − напряжение на миллиамперметре; I − сила тока в цепи; R − сопротивление миллиамперметра. Чем больше неизвестное сопротивление Rx по сравнению с сопротивлением R тем точнее результат измерения. Если Rx R то сопротивлением R можно пренебречь и тогда 6.

Русский

2013-10-29

69.5 KB

101 чел.

Лабораторная работа № 6

Измерение сопротивления методом

вольтметра-амперметра

Цель работы: изучить метод вольтметра-амперметра.

Оборудование: источник питания постоянного тока, реостат, вольтметр, миллиамперметр, ключ, исследуемые резисторы, омметр.

6.1. Краткие теоретические сведения

Простейший метод определения сопротивления − метод вольтметра-амперметра, основанный на применении закона Ома для участка цепи. Принципиальные схемы метода показаны на рис. 6.1 и 6.2.

В схеме, изображённой на рис. 6.1., вольтметр измеряет сумму напряжений на резисторе и на миллиамперметре. Искомое сопротивление в этом случае

                                      (6.1)

где U − напряжение, которое показывает вольтметр; UA − напряжение на миллиамперметре; IA − сила тока в цепи; RA − сопротивление миллиамперметра.

Чем больше неизвестное сопротивление Rx по сравнению с сопротивлением RA, тем точнее результат измерения. Если Rx >> RA, то сопротивлением RA можно пренебречь и тогда

                                                  (6.2)

Сопротивление. рассчитанное по приближённой формуле (6.2), будет больше истинного. Относительная погрешность определения сопротивления по (6.2), %,

т.е. относительная погрешность измерений тем меньше, чем больше измеряемое сопротивление.

В схеме, изображённой на рис. 6.2, показания вольтметра будут соответствовать напряжению на резисторе. Ток, протекающий через амперметр, разделится в узле С на токи, текущие через вольтметр и исследуемый резистор, т.е. амперметр покажет общую силу тока, который проходит через резистор Rx и вольтметр.

Неизвестное сопротивление

                              (6.3)

где IV − ток, протекающий через вольтметр; RV − сопротивление вольтметра.

Если Rx << RV (примерно в 100 и более раз), тогда ток IV намного меньше тока, протекающего через неизвестное сопротивление, и им можно пренебречь

                                                  (6.4)

Сопротивление, рассчитанное по этой приближённой формуле, будет меньше истинного.

6.2. Порядок выполнения работы

  1.  

Собрать цепь по схеме, изображённой на рис. 6.3. Эта схема позволяет в зависимости от положения переключателя К реализовывать попеременно одну из схем (рис. 6.1 или 6.2).

  1.  Оценить с помощью омметра сопротивление резисторов, которые необходимо измерить, и сравнить их с внутренними сопротивлениями измерительных приборов (вольтметра и миллиамперметра).
  2.  В соответствии со значением сопротивления выбрать схему измерения, переводя переключатель К в положение «1» или «2».
  3.  Выполнить по пять измерений напряжения и силы тока для каждого резистора. Рассчитать значения сопротивления по формулам (6.1), (6.2) или (6.3), (6.4) в соответствии с выбранной схемой.
  4.  Провести виртуальные расчёты по рассмотренной выше схеме для цепи, изображённой на рис. 6.4.
  5.  

Провести виртуальные расчёты по рассмотренной выше схеме для цепи, изображённой на рис. 6.5.

  1.  

Рассчитать погрешности измерении и сделать выводы.

Контрольные вопросы и задания

  1.  Что такое электрическое сопротивление?
  2.  Получить расчётные соотношения для определения сопротивлений по схемам, изображённым на рис. 6.1 и 6.2.
  3.  Чем отличаются способы определения сопротивления по этим схемам?
  4.  В каком случае расчёт сопротивления по формуле  (см. схему на рис 6.1) даёт результат более точный: а) Rx  RA; б) Rx >> RA?
  5.  В каком случае расчёт сопротивления по формуле  (см. схему на рис 6.2) даёт результат более точный: а) Rx  RV; б) Rx << RA?
  6.  Как определить внутреннее сопротивление Вольтметра? амперметра?

[13, гл. 16; 9, с. 63]

43


 

А также другие работы, которые могут Вас заинтересовать

28174. Фотоны и их свойства. Энергия и импульс фотона 95.5 KB
  Эффект Комптона К середине XIX века волновая природа электромагнитного излучения была подтверждена окончательно явлениями интерференции и дифракции света. Впервые это было осознано при рассмотрении проблемы теплового излучения. Попытки описать спектральное распределение теплового излучения на основе классической электродинамики закончились неудачей. Квантовые представления о природе электромагнитного излучения получили дальнейшее развитие при исследовании явления внешнего фотоэффекта.
28175. Задача молекулярной физики. Модель физического тела. Основные положения МКТ и их анализ. Модель идеального газа. Статистический и термодинамический способы описания. Основное уравнение МКТ идеального газа 811.5 KB
  Модель идеального газа. Основное уравнение МКТ идеального газа. Отсюда также следует что начинать построение теории следует с газов так как в этом случае выражение 1 имеет в правой части только одно слагаемое Модель газового физического тела получила название модели идеального газа. Уравнение состояния идеального газа уравнение Клапейрона ‒ Менделеева.
28176. Голография. Схема записи и восстановления голограмм. Запись голограмм на толстослойных эмульсиях. Применение голограмм 115 KB
  Схема записи голограммы представлена на рисунке 1. Денисюк осуществил запись голограммы в трехмерной среде объединив таким образом идею Габора с цветной фотографией Липпмана. Тогда участки голограммы с максимальным пропусканием света будут соответствовать тем участкам фронта предметной волны в которых ее фаза совпадает с фазой опорной волны. Поэтому при последующем освещении голограммы опорной волной в ее плоскости образуется то же распределение амплитуды и фазы которое было у предметной волны чем и обеспечивается восстановление...
28177. Искусственная анизотропия, создаваемая в результате механического деформирования, воздействия электрического (эффекты Керра и Поккельса) и магнитного (эффект Коттона - Мутона) поля. Естественная и искусственная (эффект Фарадея) оптическая активность 51 KB
  Искусственная анизотропия создаваемая в результате механического деформирования воздействия электрического эффекты Керра и Поккельса и магнитного эффект Коттона Мутона поля. Естественная и искусственная эффект Фарадея оптическая активность Среды в которых скорость распространения света в различных направлениях неодинакова называют оптически анизотропными. был открыт эффект Керра – возникновение двулучепреломления под действием электрического поля рисунок 2. Явление Керра квадратичный электрооптический эффект объясняется...
28178. Тепловое излучение тел и его законы. Ультрафиолетовая катастрофа. Формула Планка 102 KB
  Отличительной чертой теплового излучения является то что оно возникает за счет внутренней энергии тела. Тепловое излучение имеет сплошной спектр положение максимума в спектральной кривой излучения зависит от температуры. При полном термодинамическом равновесии все части системы имеют одинаковую температуру и энергия теплового излучения испускаемого каждым телом компенсируется энергией поглощаемого этим телом теплового излучения других тел. Спектр равновесного излучения не зависит от природы вещества.
28179. Фотоэффект. Основные законы внешнего фотоэффекта. Уравнение Эйнштейна. Внутренний фотоэффект. Фотоэлементы и их применение 87.5 KB
  Фотоэффект. Основные законы внешнего фотоэффекта. Внутренний фотоэффект. Явление вырывания электронов с поверхности вещества под действием электромагнитного излучения называется внешним фотоэффектом.
28180. Поглощение (абсорбция) света веществом. Закон Бугера. Элементарная квантовая теория излучения и поглощения света. Спонтанные и вынужденные переходы. Коэффициенты Эйнштейна. Условие усиления света 165 KB
  Элементарная квантовая теория излучения и поглощения света. Условие усиления света Под действием электромагнитного поля световой волны проходящей через вещество возникают колебания электронов среды с чем связано уменьшение энергии излучения затрачиваемой на возбуждение колебаний электронов. Частично эта энергия восполняется в результате излучения электронами вторичных волн частично она может преобразовываться в другие виды энергии. Действительно опытным путем установлено а затем и теоретически доказано Бугéром что интенсивность...
28181. Лазеры. Принципиальная схема лазера. Основные структурные элементы лазера и их назначение. Типы лазеров. Основные характеристики лазеров 181 KB
  Каждому радиационному переходу между энергетическими уровнями и в спектре соответствует спектральная линия характеризующаяся частотой и некоторой энергетической характеристикой излучения испущенного для спектров испускания поглощенного для спектров поглощения или рассеянного для спектров рассеяния атомной системой. При этом распространение излучения в среде обязательно сопровождается уменьшением его интенсивности – выполняется закон Бугера где – интенсивность излучения вошедшего в вещество d – толщина слоя – коэффициент...
28182. Оптика движущихся сред. Эффект Доплера. Поперечный и продольный эффект Доплера 194 KB
  Он гласит: все физические законы независимы инвариантны по отношению к выбору инерциальной системы отсчёта. Это означает что уравнения выражающие законы физики имеют одинаковую форму во всех инерциальных системах отсчёта. Поэтому на основе любых физических экспериментов нельзя выбрать из множества инерциальных систем отсчёта какуюто главную абсолютную систему отсчёта обладающую какимилибо качественными отличиями от других инерциальных систем отсчёта. Она одинакова во всех направлениях в пространстве и во всех инерциальных системах...