42495

Исследование электростатических полей с помощью электролитической ванны

Лабораторная работа

Физика

При конструировании электронных ламп конденсаторов электронных линз и других приборов часто требуется знать распределение электрического поля в пространстве заключённом между электродами сложной формы. Аналитический расчёт поля удаётся только для самых простых конфигураций электродов и в общем случае невыполним. Поэтому сложные электростатические поля исследуются экспериментально. Точки поля имеющие одинаковый потенциал образуют поверхности равного потенциала эквипотенциальные поверхности.

Русский

2013-10-29

61.5 KB

46 чел.

Лабораторная работа № 7

Исследование электростатических полей с

помощью электролитической ванны

Цель работы: представить графически картины электростатических полей с помощью эквипотенциальных поверхностей и линий напряжённости для двух параллельных пластин и двух пластин и металлического цилиндра между ними, для двух коаксиальных цилиндров.

Оборудование: электролитическая ванна, трансформатор 220/12 В, вольтметр, реостат, нуль-индикатор (вольтметр), электроды разной конфигурации, зонды.

7.1. Краткие теоретические сведения

Электростатическое поле в каждой точке характеризуется вектором напряжённости  и  потенциалом. При конструировании электронных ламп, конденсаторов, электронных линз и других приборов часто требуется знать распределение электрического поля в пространстве, заключённом между электродами сложной формы. Аналитический расчёт поля удаётся только для самых простых конфигураций электродов и в общем случае невыполним. Поэтому сложные электростатические поля исследуются экспериментально.

Точки поля, имеющие одинаковый потенциал, образуют поверхности равного потенциала (эквипотенциальные поверхности). Система эквипотенциальных поверхностей исчерпывающим образом описывает электростатическое поле.

Для исследований используют модель объекта, расположенную в электролитической ванне. Измерения в электролитической ванне производят с помощью электродов, форма которых воспроизводит объект в некотором масштабе, чаще увеличенном. Электроды располагают друг относительно друга так же, как они расположены в моделируемом приборе. На них подают потенциалы, равные действительным или изменённые в заданном отношении. При этом между электродами образуется электрическое поле, отличающееся от исследуемого по величине напряжённости, но совпадающее с ним по конфигурации с точностью до масштаба.

Заполним теперь пространство между электродами слабо проводящей жидкостью. Замена непроводящей среды на проводящую может, вообще говоря, изменить распределение электрического поля. Выясним условия, необходимые для того, чтобы такого изменения не произошло.

Распределение электрического поля в пространстве описывается дифференциальными уравнениями в частных производных (уравнения Максвелла), решения которых зависят как от формы уравнений, так и от граничных условий на стенках ванны и поверхности жидкости.

Граничные условия на поверхности жидкости и воздуха определяются тем, что электрический ток не может идти перпендикулярно к этой поверхности (из проводящей жидкости в непроводящий воздух). Так как плотность тока пропорциональна напряжённости  электрического поля, то в жидкости установится такое распределение потенциала, при котором вектор  не имеет составляющей, перпендикулярной к поверхности. В электролитической ванне, следовательно, можно без искажений моделировать только такие поля, которые не имеют составляющих, перпендикулярных к той плоскости, где будет проходить поверхность жидкости. Это же требование, в принципе, должно выполняться на дне и стенках ванны. Последние обычно находятся достаточно далеко от исследуемой модели объекта, так что их влияние можно не учитывать.

При определённых условиях распределение поля в электролитической ванне с достаточной точностью воспроизводит распределение поля в непроводящей среде (в вакууме или воздухе) при том же расположении электродов. Исследование поля в проводящей среде существенно проще, чем в непроводящей. Обычно в электролитической ванне производится измерение не вектора напряжённости поля, а электрических потенциалов. Для измерений в жидкость вводят зонды – тонкие металлические проводники, соединённые с измерительной аппаратурой.

Введение в жидкость металлических проводников − зондов, вообще говоря, изменяет распределение поля в жидкости, так как вдоль зонда принудительно устанавливается одинаковый электрический потенциал. Измерительные зонды поэтому не вызывают искажений лишь в том случае, если они располагаются вдоль линий, которые и до внесения зонда обладали одинаковым потенциалом. Особенно удобно исследовать с помощью зондов плоские поля. Зонд, расположенный параллельно этой оси, в этом случае заведомо не искажает распределения электрического поля.

7.2. Описание измерительной установки и порядок выполнения работы

Изучение электрического поля путём экспериментально найденного расположения эквипотенциальных поверхностей этого поля может быть проведено на установке, электрическая схема которой показана на рис. 7.1.

Эта установка состоит из сосуда, наполненного водой, в которую помещается система электродов. Сосуд имеет установочные винты, которыми устанавливают одинаковую высоту слоя воды. Пластины, к которым подводится переменная разность потенциалов, являются электродами. Переменная разность потенциалов применяется во избежание возникновения электролиза в проводящей среде.

В цепь электродов введено ограничивающее сопротивление на случай возможного короткого замыкания электродов между собой.

При исследовании эквипотенциальных линий поля, лежащих в горизонтальной плоскости, для двух параллельных в данный момент разноимённо заряженных плоских электродов поступают так. Намечают вдоль оси ОХ, перпендикулярной к поверхности электродов (рис. 7.1), точки, разнящиеся по потенциалу на некоторое одно и тоже значение (1 В), для чего вольтметром измеряют разность потенциалов между двумя соседними точками, в которые ставят вертикальные щупы-зонды, соединённые с клеммами вольтметра, т.е. на оси ОХ отмечают точки А, B, C, …, начиная отсчёт от электрода. Затем вводят в воду один из зондов в намеченную точку А на оси ОХ, а другой зонд передвигают в направлении оси ОY, перпендикулярно к оси ОХ, и находят вторым зондом точки, эквипотенциальные точке А. Расположение стрелки нуль-индикатора (вольтметра) против нуля свидетельствует о том, что разность потенциалов между точками, в которых расположены зонды, равна нулю.

Так отыскивают для точки А (через каждые 2 − 3 см) эквипотенциальные точки А1, А2, А3, … . Координаты этих точек заносят в таблицу.

Совокупность точек А1, А2, А3, … даёт возможность построить на миллиметровке эквипотенциальную линию, проходящую через точку А. Таким же образом находят эквипотенциальные линии, проходящие через точки B, C, D, …, которые наносят на миллиметровку.

Задание 1. По пространственным эквипотенциальным линиям однородного поля произвести расчёт напряжённости и плотности заряда на пластинах.

Задание 2. Исследовать поле между пластинами при внесении в него незаряженного металлического кольца.

Задание 3. Исследовать поле, созданное двумя коаксиальными цилиндрами. Произвести расчёт напряжённости ряда точек этого поля.

Контрольные вопросы и задания

  1.  Что называется электрическим полем?
  2.  Почему электростатическое поле для исследования можно моделировать электрическим?
  3.  Что называется эквипотенциальной поверхностью?
  4.  Что называется напряжённостью электрического поля?
  5.  Объяснить картины исследованных полей.

[2, § 8 − 20, 27; 3, § 20, 21; 4; 6; 10]

48


 

А также другие работы, которые могут Вас заинтересовать

29930. Организация внешнего контроля качества аудита 37 KB
  В соответствии с планом уполномоченный орган по контролю качества работы определяет и согласовывает с аудиторской организацией индивидуальным аудитором сроки проведения проверки. Однако указанная норма проекта Федерального закона Об аудиторской деятельности противоречит законодательству Российской Федерации а именно Федеральному закону О защите прав юридических лиц и индивидуальных предпринимателей при проведении государственного контроля надзора положения которого предусматривают что плановая проверка не может проводиться чаще...
29931. Основные этапы, техника и технология проведения аудиторских проверок 33 KB
  Для успешной реализации целей конкретной аудиторской проверки необходимо чтобы последовательно выполнялись основные этапы проведения аудита. Некоторые российские специалисты с различной степенью детализации выделяют следующие этапы аудиторской проверки: 1 на этапе подготовки и планирования аудита производится ознакомление с экономикой проверяемого предприятия оцениваются существенность и аудиторский риск система бухгалтерского учета и система внутреннего контроля разрабатываются общий план и программа проверки; 2 этап документирования и...
29932. Природные чрезвычайные ситуации гидрологического происхождения: наводнения, сели, цунами и их последствия; мероприятия, проводимые по защите населения 38.5 KB
  Цунами это гигантские океанские волны возникающие чаще пито в результате подводных и островных землетрясений или извержений вулканов. Наиболее опасны цунами для населенных пунктов расположенных на низких океанских берегах. Вторичными последствиями цунами являются пожары возникающие в результате повреждения пожароопасных объектов.
29933. Лесные и торфяные пожары и их последствия. Профилактика лесных и торфяных пожаров 32.5 KB
  Лесные пожары бывают низовыми верховыми и подземными. Верховые пожары уничтожают верхний полог леса и распространяются со скоростью 825 км ч. Подземные пожары случаются на торфяных грунтах распространяются со скоростью 210 м в день.
29934. Чрезвычайные ситуации техногенного характера. Общие понятия и определения. Классификация чрезвычайных ситуаций по масштабам их распространения и тяжести последствий 35 KB
  Правила ухода за кожей зубами и волосами: регулярно менять белье носки чулки колготки гольфы; У мыться ежедневно теплой водой с туалетным или детским мылом; если кожа чешется смазать ее кремом или мазью; не выдавливать прыщи не вскрывать гнойники так как на их месте может начаться воспаление; при обнаружении на теле сыпи сразу же сказать об этом родителям; употреблять в пищу больше свежих овощей и фруктов молока; в них достаточно витаминов и минеральных веществ необходимых для кожи; зимой защищать кожу от...
29935. Радиационно-опасные объекты. Аварии на радиационно-опасных объектах и их возможные последствия. Обеспечение радиационной безопасности населения 39 KB
  Это поражение может произойти следующими способами: внешнее облучение при прохождении радиоактивного облака; внешнее облучение обусловленное радиоактивным загрязнением почвы и местных предметов; внутреннее облучение при вдыхании воздуха зараженного радиоактивными веществами; внутреннее облучение при употреблении загрязненной воды пищи; контактное облучение в результате попадания на кожу и одежду радиоактивных веществ.