42495

Исследование электростатических полей с помощью электролитической ванны

Лабораторная работа

Физика

При конструировании электронных ламп конденсаторов электронных линз и других приборов часто требуется знать распределение электрического поля в пространстве заключённом между электродами сложной формы. Аналитический расчёт поля удаётся только для самых простых конфигураций электродов и в общем случае невыполним. Поэтому сложные электростатические поля исследуются экспериментально. Точки поля имеющие одинаковый потенциал образуют поверхности равного потенциала эквипотенциальные поверхности.

Русский

2013-10-29

61.5 KB

42 чел.

Лабораторная работа № 7

Исследование электростатических полей с

помощью электролитической ванны

Цель работы: представить графически картины электростатических полей с помощью эквипотенциальных поверхностей и линий напряжённости для двух параллельных пластин и двух пластин и металлического цилиндра между ними, для двух коаксиальных цилиндров.

Оборудование: электролитическая ванна, трансформатор 220/12 В, вольтметр, реостат, нуль-индикатор (вольтметр), электроды разной конфигурации, зонды.

7.1. Краткие теоретические сведения

Электростатическое поле в каждой точке характеризуется вектором напряжённости  и  потенциалом. При конструировании электронных ламп, конденсаторов, электронных линз и других приборов часто требуется знать распределение электрического поля в пространстве, заключённом между электродами сложной формы. Аналитический расчёт поля удаётся только для самых простых конфигураций электродов и в общем случае невыполним. Поэтому сложные электростатические поля исследуются экспериментально.

Точки поля, имеющие одинаковый потенциал, образуют поверхности равного потенциала (эквипотенциальные поверхности). Система эквипотенциальных поверхностей исчерпывающим образом описывает электростатическое поле.

Для исследований используют модель объекта, расположенную в электролитической ванне. Измерения в электролитической ванне производят с помощью электродов, форма которых воспроизводит объект в некотором масштабе, чаще увеличенном. Электроды располагают друг относительно друга так же, как они расположены в моделируемом приборе. На них подают потенциалы, равные действительным или изменённые в заданном отношении. При этом между электродами образуется электрическое поле, отличающееся от исследуемого по величине напряжённости, но совпадающее с ним по конфигурации с точностью до масштаба.

Заполним теперь пространство между электродами слабо проводящей жидкостью. Замена непроводящей среды на проводящую может, вообще говоря, изменить распределение электрического поля. Выясним условия, необходимые для того, чтобы такого изменения не произошло.

Распределение электрического поля в пространстве описывается дифференциальными уравнениями в частных производных (уравнения Максвелла), решения которых зависят как от формы уравнений, так и от граничных условий на стенках ванны и поверхности жидкости.

Граничные условия на поверхности жидкости и воздуха определяются тем, что электрический ток не может идти перпендикулярно к этой поверхности (из проводящей жидкости в непроводящий воздух). Так как плотность тока пропорциональна напряжённости  электрического поля, то в жидкости установится такое распределение потенциала, при котором вектор  не имеет составляющей, перпендикулярной к поверхности. В электролитической ванне, следовательно, можно без искажений моделировать только такие поля, которые не имеют составляющих, перпендикулярных к той плоскости, где будет проходить поверхность жидкости. Это же требование, в принципе, должно выполняться на дне и стенках ванны. Последние обычно находятся достаточно далеко от исследуемой модели объекта, так что их влияние можно не учитывать.

При определённых условиях распределение поля в электролитической ванне с достаточной точностью воспроизводит распределение поля в непроводящей среде (в вакууме или воздухе) при том же расположении электродов. Исследование поля в проводящей среде существенно проще, чем в непроводящей. Обычно в электролитической ванне производится измерение не вектора напряжённости поля, а электрических потенциалов. Для измерений в жидкость вводят зонды – тонкие металлические проводники, соединённые с измерительной аппаратурой.

Введение в жидкость металлических проводников − зондов, вообще говоря, изменяет распределение поля в жидкости, так как вдоль зонда принудительно устанавливается одинаковый электрический потенциал. Измерительные зонды поэтому не вызывают искажений лишь в том случае, если они располагаются вдоль линий, которые и до внесения зонда обладали одинаковым потенциалом. Особенно удобно исследовать с помощью зондов плоские поля. Зонд, расположенный параллельно этой оси, в этом случае заведомо не искажает распределения электрического поля.

7.2. Описание измерительной установки и порядок выполнения работы

Изучение электрического поля путём экспериментально найденного расположения эквипотенциальных поверхностей этого поля может быть проведено на установке, электрическая схема которой показана на рис. 7.1.

Эта установка состоит из сосуда, наполненного водой, в которую помещается система электродов. Сосуд имеет установочные винты, которыми устанавливают одинаковую высоту слоя воды. Пластины, к которым подводится переменная разность потенциалов, являются электродами. Переменная разность потенциалов применяется во избежание возникновения электролиза в проводящей среде.

В цепь электродов введено ограничивающее сопротивление на случай возможного короткого замыкания электродов между собой.

При исследовании эквипотенциальных линий поля, лежащих в горизонтальной плоскости, для двух параллельных в данный момент разноимённо заряженных плоских электродов поступают так. Намечают вдоль оси ОХ, перпендикулярной к поверхности электродов (рис. 7.1), точки, разнящиеся по потенциалу на некоторое одно и тоже значение (1 В), для чего вольтметром измеряют разность потенциалов между двумя соседними точками, в которые ставят вертикальные щупы-зонды, соединённые с клеммами вольтметра, т.е. на оси ОХ отмечают точки А, B, C, …, начиная отсчёт от электрода. Затем вводят в воду один из зондов в намеченную точку А на оси ОХ, а другой зонд передвигают в направлении оси ОY, перпендикулярно к оси ОХ, и находят вторым зондом точки, эквипотенциальные точке А. Расположение стрелки нуль-индикатора (вольтметра) против нуля свидетельствует о том, что разность потенциалов между точками, в которых расположены зонды, равна нулю.

Так отыскивают для точки А (через каждые 2 − 3 см) эквипотенциальные точки А1, А2, А3, … . Координаты этих точек заносят в таблицу.

Совокупность точек А1, А2, А3, … даёт возможность построить на миллиметровке эквипотенциальную линию, проходящую через точку А. Таким же образом находят эквипотенциальные линии, проходящие через точки B, C, D, …, которые наносят на миллиметровку.

Задание 1. По пространственным эквипотенциальным линиям однородного поля произвести расчёт напряжённости и плотности заряда на пластинах.

Задание 2. Исследовать поле между пластинами при внесении в него незаряженного металлического кольца.

Задание 3. Исследовать поле, созданное двумя коаксиальными цилиндрами. Произвести расчёт напряжённости ряда точек этого поля.

Контрольные вопросы и задания

  1.  Что называется электрическим полем?
  2.  Почему электростатическое поле для исследования можно моделировать электрическим?
  3.  Что называется эквипотенциальной поверхностью?
  4.  Что называется напряжённостью электрического поля?
  5.  Объяснить картины исследованных полей.

[2, § 8 − 20, 27; 3, § 20, 21; 4; 6; 10]

48


 

А также другие работы, которые могут Вас заинтересовать

39441. Создание качественных каналов и связи на направлении МИНСК-ГРОДНО (через ЛИДУ) 326.5 KB
  Основные параметры системы передачи Параметр Значение параметра Число организуемых каналов 480 Скорость передачи информации кбит с 34368 Тип линейного кода HDB3 или MI Амплитуда импульсов в линии В 302 Расчетная частота кГц 17186 Номинальное затухание участка регенерации дБ 65 Номинальное значение тока ДП мА 200 Допустимые значения напряжения ДП В 401300650 относительно земли Максимальное расстояние ОРПОРП 200 км Максимальное число НРП между ОРП 66 Максимальное число НРП в полу секции ДП 33 Комплекс аппаратуры...
39442. Использование каналов цифровых систем для передачи дискретных сигналов 190.5 KB
  В состав аппаратуры ИКМ120у входят: аналогоцифровое оборудование формирования стандартных первичных цифровых потоков АЦО оборудование вторичного временного группообразования ВВГ оконечное оборудование линейного тракта ОЛТ необслуживаемые регенерационные пункты НРП. Оборудование ОЛТ обеспечивает согласование выхода оборудования ВВГ с линейным трактом дистанционное питание ДП НРП телеконтроль ТК и сигнализацию о состоянии линейного тракта СС между оконечными и промежуточными пунктами. Для размещения НРП необходимо определить...
39443. ПРОЕКТИРОВАНИЕ МЕЖДУГОРОДНЕЙ ЦИФРОВОЙ ЛИНИИ ПЕРЕДАЧИ 446 KB
  Размещение НРП вдоль кабельной линии передачи осуществляется в соответствии с номинальной длиной регенерационного участка РУ для проектируемой ЦСП. блоки регенераторов в НРП не содержат искусственных линий ИЛ. Необходимое число НРП определяется по формуле: N=n1; N1=10; N2=16. Из произведенных расчетов следует что между ОП1 и ПВ потребуется установить 10 НРП между ОП2 и ПВ 16.
39444. Создание качественных каналов на направлении Витебск – Глубокое – Браслав 308.5 KB
  В состав аппаратуры входят: оборудование вторичного временного преобразования ВВГ оконечное оборудование линейного тракта ОЛТ необслуживаемые регенерационные пункты НРП а также комплект контрольноизмерительных приборов КИП. Оконечное оборудование линейного тракта обеспечивает согласование выхода оборудования ВВГ с линейным трактом дистанционное питание НРП телеконтроль и сигнализацию о состоянии линейного тракта служебную связь между оконечными и промежуточными пунктами. Оборудование НРП аппаратуры ИКМ120У включает в себя блоки...
39445. Разработка линии связи между ОП1 (Витебск) и ОП2 (Гродно) через ПВ (Лида) 409.5 KB
  Основные параметры системы передачи ИКМ480 Параметр Значение параметра Число организуемых каналов 480 Скорость передачи информации кбит с 34 368 Тип линейного кода КВП3 или ЧПИ Расчетная частота кГц 34 368 Номинальное затухание участка регенерации дБ 65 Номинальное значение тока ДП мА 200 Допустимые значения напряжения ДП В 1300 Максимальное расстояние ОРПОРП 201 км Максимальное число НРП между ОРП 66 Максимальное число НРП в полусекции ДП 33 Номинальная длина регенерационного участка км Комплекс аппаратуры ЦСП ИКМ480...
39447. Цифровая система передачи (ИКМ-120 или ИКМ-480) 397 KB
  В состав аппаратуры ИКМ120у входят аналогоцифровое оборудование формирования стандартных первичных цифровых потоков АЦО оборудование вторичного временного группообразования ВВГ оконечное оборудование линейного тракта ОЛТ необслуживаемые регенерационные пункты НРП. Оконечное оборудование линейного тракта обеспечивает согласование выхода оборудования ВВГ с линейным трактом дистанционное питание НРП телеконтроль и сигнализацию о состоянии линейного тракта служебную связь между оконечными и промежуточными пунктами. Оборудование НРП...