42499

Проектування волоконно-оптичної системи передачі інфопмації

Лабораторная работа

Информатика, кибернетика и программирование

Львів 2010 Мета роботи : Ознайомитися з послідовністю проектування ВОСП методикою інженерного розрахунку волоконно оптичних систем зв`язку а також отримати певні навики практичного розрахунку системи для заданих параметрів. Визначення потрібної швидкості передачі топології системи. Енергетична характеристика системи.

Украинкский

2013-10-29

256 KB

4 чел.

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Національний університет “Львівська політехніка”

Кафедра “Телекомунікації”

Лабораторна робота 8

Проектування волоконно-оптичної системи передачі інфопмації.

Виконав:

Янишин В. Б.

Прийняв:

Яремко О. М.

Львів 2010

Мета роботи : Ознайомитися з послідовністю проектування ВОСП,

                          методикою інженерного розрахунку волоконно-

                          оптичних систем зв`язку, а також отримати певні

                           навики практичного розрахунку системи для

                           заданих параметрів.

Теоретична частина.

Інженерний розрахунок ВОСП складається з 10 етапів, кожен з яких має кілька кроків.

   Етап 1. Визначення потрібної швидкості передачі, топології системи.

1.1  Вибір потрібної швидкості передачі інформації - В, Мбіт/с.

1.2  Задання потрібної імовірності помилки - Рпом.

1.3  Спосіб кодування, відстань між кінцевими пунктами - L, км.

   Етап 2. Вибір типу оптичного кабеля.

2.1 Вибір типу кабеля, затухання alpha, дБ/км, маса 1 м, кг, кількість волокон, вартість, параметри волокон NA, n.

   Етап 3. Вибір джерела випромінення, визначення його параметрів.

3.1  Тип джерела, середня вихідна потужність Рсер, дБм

3.2  Технічні параметри джерела випромінення, lambda 0, нм  sigma(lambda), нм

3.3  При цифровій передачі сигналів з поверненням в нуль (код RZ) із Рсер віднімаємо 6 дБм, без повернення в нуль (код NRZ) - Р7=3 дБм.

3.4  При роботі джерела в режимі половинної потужності відняти Р8=3 дБм.

3.5  Сумарна потужність випромінення, дБм, Рсум=Рсер-Р7-Р8.

   Етап 4. Вибір фотоприймача, визначення його параметрів.

4.1  Тип фотоприймача.

4.2  Технічні параметри приймача

  1.  Потрібна оптична чутливість приймача Рпр, дБм.  

Етап 5. Енергетична характеристика системи.

  1.  Повний запас по потужності , дБ, Р13=Рсум-Рпр.

Етап 6. Втрати в лінійному тракті.

6.1  Повні втрати в оптичному кабелі, дБ , Р14=alpha*L .

6.2  Втрати при введенні світла в волокно Р15, дБ.

6.3  Втрати при виведенні світла з волокна в фотоприймач Р16, дБ.

6.4  Втрати в кабельних роз’ємах і з’єднаннях Р17, дБ.

6.5  Втрати в системі розподілу даних Р18, дБ.

   Етап 7. Запас по потужності сигналу.

7.1  Допуск на температурні зміни характеристик елементів Р19, дБ.

7.2  Допуск на погіршення параметрів елементів в часі Р20, дБ.

   Етап 8. Енергетичний запас системи.

8.1  Сумарне затухання в системі, дБ, Р21=Р14+Р15+Р16+Р17+Р18+Р19+Р20.

8.2  Енергетичний запас системи, дБ, Р22=Р13-Р21. Якщо Р22<=0, потрібно змінити елементну базу системи або ввести додаткові ретранслятори.

   Етап 9. Розрахунок швидкодії системи.

9.1  Визначення повної допустимої швидкодії системи V, нс.

9.2  Швидкодія випромінювача (передаючого модуля) t24, нс.

9.3  Швидкодія фотодетектора t25, нс.

9.4  Модова дисперсія Tмод, нс/км , (розрахунок або вибір із довідника чи технічних умов на кабель).Сумарна дисперсія, нс, t27=Tмод*L.

9.5  Матеріальна дисперсія Тмат, нс/км, розраховується чи визначається по графіках для вибраного типу ВС. Сумарна дисперсія , нс, tп=Тмат*L. Врахування хвилевідної дисперсії Тхв, нс/км, в окремих випадках врахування дисперсії профіля tп’=Твд *L, t28п=sqrt(tп^2+tп’^2).

9.6  Результуюча швидкодія системи, нс^2-  S=t24^2+t25^2+t27^2+t28^2.

   Етап 10. Аналіз системи.

10.1 Після розрахунку системи , тобто виконання співвідношень Р22 > 0 і t30<V , потрібно виконати аналіз системи, визначивши основні фактори, що накладають обмеження на систему. Потрібно відмітити , що обмежує довжину регенераційної ділянки системи : єнергетичний запас чи часові параметри (швидкодія). Якщо обмежують довжину ділянки енергетичні параметри, то можна ослабити вимоги до швидкодії випромінювачів і приймачів, дисперсії ОВ; якщо швидкодія - можна ослабити вимоги до чутливості приймача, потужності випромінювача, типу сигналу, що передається (наприклад вибору коду), втратам в кабелі і роз’ємах.. Вказані пониження вимог дозволить змінити елементну базу ВОСЗ в сторону її спрощення  і зниження її вартості.

Практична частина.

   В даній лабораторній роботі потрібно провести інженерний розрахунок волоконно-оптичної системи передачі для заданих вхідних параметрів. Перед виконанням практичної частини потрібно уважно ознайомитися з теоретичною частиною лабораторної роботи №3, а саме з послідовністю розрахунку і методами покращення параметрів спроектованої системи.                    

                           


Після нажаття клавіші ОК

Для виконання практичної частини потрібно отримати завдання викладача для вхідних параметрів проектованої системи, а саме відстань між кінцевими пунктами системи L, км; швидкість передачі інформації В,Мбіт/с; імовірність помилки для одного регенератора Рпом; довжину хвилі оптичної несучої 0; тип коду, що використовується для кодування сигналів в лінії.

    Після запуску програми всі ці дані вводяться для подальших розрахунків.

     Далі підбираються такі компоненти, які задовільняють вимоги системи до швидкодії, їх параметри записуються в текстовий файл, далі результати інженерного розрахунку також заносяться в цей же файл.Розрахунки потрібно провести для декількох наборів оптичних компонент, довжин хвилі оптичної несучої, а також різної кількості оптичних волокон, по яких ведеться передача і зробити порівняльний аналіз. З отриманих результтів вибрати оптимальний варіант і обовязково включити його в звіт.

Висновок. Ми ознайомилися з послідовністю проектування ВОСПІ,                            методикою інженерного розрахунку волоконно- оптичних систем зв`язку, а також отримали певні навики практичного розрахунку системи для  заданих параметрів.


 

А также другие работы, которые могут Вас заинтересовать

44596. Сетевые архитектуры ArcNet и ArcNet Plus 48 KB
  Физическая топология звезда шина звезда – шина; логическая топология упорядоченное кольцо; широкополосная передача данных 25 Мбит с и 20 Мбит с для rcNet Plus; метод доступа маркерный; средой передачи может быть: коаксиальный кабель длиной 600 м при звезде и 300 м при шине; витая пара максимальная длина 244 м – при звезде и шине; Компьютеры могут быть коаксиальным кабелем связаны в шину или в иных случаях подключены к концентраторам которые могут быть: пассивными; активными; интеллектуальными....
44597. Token Ring (Маркерное кольцо) 61.5 KB
  Физическая топология звезда; логическая топология кольцо; узкополосный тип передачи; скорость передачи 4 и 16 Мбит с; соединение неэкранированной и экранированной витой пары; метод доступа – маркерное кольцо. Формат кадра используемый в сетях Token Ring Аппаратные компоненты Логическое кольцо в этой сетевой архитектуре организуется концентратором который называется модулем множественного доступа MSU – MultySttion ccess Unit или интеллектуальным модулем множественного доступа SMU – Smrt Multysttion ccess Unit....
44598. FDDI - распределенный волоконно-оптический интерфейс передачи данных 42 KB
  В сети FDDI компьютер: захватывает маркер на определенный интервал времени; за этот интервал передает столько кадров сколько успеет; завершает передачу либо по окончании выделенного интервала времени либо из-за отсутствия передаваемых кадров. Этим объясняется более высокая производительность FDDI чем Token Ring которая позволяет циркулировать в кольце только одному кадру. FDDI основана на технологии совместного использования сети.
44599. СЕТЕВЫЕ АРХИТЕКТУРЫ 34.5 KB
  В соответствии со стандартными протоколами физического уровня выделяют три основные сетевые архитектуры Данные Циклический избыточный код для проверки ошибок Приемника источника Формат кадра в Ethernet Поле Тип протокола используется для идентификации протокола сетевого уровня IPX и IP маршрутизируемый или нет....
44600. Причины расширения ЛВС и используемые для этого устройства 28.5 KB
  С ростом компаний растут и ЛВС. Однако существуют устройства которые могут: сегментировать ЛВС так что каждый сегмент станет самостоятельной ЛВС; объединять две ЛВС в одну; подключать ЛВС к другим сетям для объединения их в интернет.
44601. Мост как устройство комплексирования ЛВС 190 KB
  Эти устройства как и репитеры могут увеличивать размер сети и количество РС в ней; соединять разнородные сетевые кабели. на более высоком чем репитеры и учитывают больше особенностей передаваемых данных позволяя: восстанавливать форму сигналов но делая это на уровне пакетов; соединять разнородные сегменты сети например Ethernet и Token Ring и переносить между ними пакеты; повысить производительность эффективность безопасность и надежность сетей что будет рассмотрено ниже. Принципы работы мостов Работа моста основана на...
44602. Маршрутизаторы 41 KB
  Маршрутизатор в отличие от моста имеет свой адрес и используется как промежуточный пункт назначения. Однако эта таблица существенно отличается от таблиц мостов тем что она содержит не адреса узлов а адреса сетей Для каждого протокола используемого в сети строится своя таблица которая включает: все известные адреса сетей; способы связи с другими сетями; возможные пути маршрутизации; стоимости передачи данных по этим путям. Маршрутизаторы принимая пакеты не проверяют адрес узла назначения а выделяют только адрес сети. Они...
44603. Подключение репитера в ЛВС 168.5 KB
  Подключение репитера в ЛВС Репитеры передают весь трафик в обоих направлениях и работают на физическом уровне модели OSI. Однако репитеры позволяют соединять два сегмента которые используют различные физические среды передачи сигналов кабель – оптика кабель – пара и т. Некоторые многопортовые репитеры работают как многопортовые концентраторы соединяющие разные типы кабелей.
44604. Удаленный доступ к ресурсам сетей 35.5 KB
  Основной характеристикой модема является его производительность измеряемая количеством битов переданных за 1 секунду. Изначально скорость модема измерялась в бодах 1бод = 1 бит с. Однако бод используется в технике связи и относится к частоте изменений аналогового сигнала переносящей биты данных по телефонной линии. В 80х годах скорость бодов равнялась скорости передачи модемов 300 бод было эквивалентно 300 бит с.