42499

Проектування волоконно-оптичної системи передачі інфопмації

Лабораторная работа

Информатика, кибернетика и программирование

Львів 2010 Мета роботи : Ознайомитися з послідовністю проектування ВОСП методикою інженерного розрахунку волоконно оптичних систем зв`язку а також отримати певні навики практичного розрахунку системи для заданих параметрів. Визначення потрібної швидкості передачі топології системи. Енергетична характеристика системи.

Украинкский

2013-10-29

256 KB

4 чел.

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Національний університет “Львівська політехніка”

Кафедра “Телекомунікації”

Лабораторна робота 8

Проектування волоконно-оптичної системи передачі інфопмації.

Виконав:

Янишин В. Б.

Прийняв:

Яремко О. М.

Львів 2010

Мета роботи : Ознайомитися з послідовністю проектування ВОСП,

                          методикою інженерного розрахунку волоконно-

                          оптичних систем зв`язку, а також отримати певні

                           навики практичного розрахунку системи для

                           заданих параметрів.

Теоретична частина.

Інженерний розрахунок ВОСП складається з 10 етапів, кожен з яких має кілька кроків.

   Етап 1. Визначення потрібної швидкості передачі, топології системи.

1.1  Вибір потрібної швидкості передачі інформації - В, Мбіт/с.

1.2  Задання потрібної імовірності помилки - Рпом.

1.3  Спосіб кодування, відстань між кінцевими пунктами - L, км.

   Етап 2. Вибір типу оптичного кабеля.

2.1 Вибір типу кабеля, затухання alpha, дБ/км, маса 1 м, кг, кількість волокон, вартість, параметри волокон NA, n.

   Етап 3. Вибір джерела випромінення, визначення його параметрів.

3.1  Тип джерела, середня вихідна потужність Рсер, дБм

3.2  Технічні параметри джерела випромінення, lambda 0, нм  sigma(lambda), нм

3.3  При цифровій передачі сигналів з поверненням в нуль (код RZ) із Рсер віднімаємо 6 дБм, без повернення в нуль (код NRZ) - Р7=3 дБм.

3.4  При роботі джерела в режимі половинної потужності відняти Р8=3 дБм.

3.5  Сумарна потужність випромінення, дБм, Рсум=Рсер-Р7-Р8.

   Етап 4. Вибір фотоприймача, визначення його параметрів.

4.1  Тип фотоприймача.

4.2  Технічні параметри приймача

  1.  Потрібна оптична чутливість приймача Рпр, дБм.  

Етап 5. Енергетична характеристика системи.

  1.  Повний запас по потужності , дБ, Р13=Рсум-Рпр.

Етап 6. Втрати в лінійному тракті.

6.1  Повні втрати в оптичному кабелі, дБ , Р14=alpha*L .

6.2  Втрати при введенні світла в волокно Р15, дБ.

6.3  Втрати при виведенні світла з волокна в фотоприймач Р16, дБ.

6.4  Втрати в кабельних роз’ємах і з’єднаннях Р17, дБ.

6.5  Втрати в системі розподілу даних Р18, дБ.

   Етап 7. Запас по потужності сигналу.

7.1  Допуск на температурні зміни характеристик елементів Р19, дБ.

7.2  Допуск на погіршення параметрів елементів в часі Р20, дБ.

   Етап 8. Енергетичний запас системи.

8.1  Сумарне затухання в системі, дБ, Р21=Р14+Р15+Р16+Р17+Р18+Р19+Р20.

8.2  Енергетичний запас системи, дБ, Р22=Р13-Р21. Якщо Р22<=0, потрібно змінити елементну базу системи або ввести додаткові ретранслятори.

   Етап 9. Розрахунок швидкодії системи.

9.1  Визначення повної допустимої швидкодії системи V, нс.

9.2  Швидкодія випромінювача (передаючого модуля) t24, нс.

9.3  Швидкодія фотодетектора t25, нс.

9.4  Модова дисперсія Tмод, нс/км , (розрахунок або вибір із довідника чи технічних умов на кабель).Сумарна дисперсія, нс, t27=Tмод*L.

9.5  Матеріальна дисперсія Тмат, нс/км, розраховується чи визначається по графіках для вибраного типу ВС. Сумарна дисперсія , нс, tп=Тмат*L. Врахування хвилевідної дисперсії Тхв, нс/км, в окремих випадках врахування дисперсії профіля tп’=Твд *L, t28п=sqrt(tп^2+tп’^2).

9.6  Результуюча швидкодія системи, нс^2-  S=t24^2+t25^2+t27^2+t28^2.

   Етап 10. Аналіз системи.

10.1 Після розрахунку системи , тобто виконання співвідношень Р22 > 0 і t30<V , потрібно виконати аналіз системи, визначивши основні фактори, що накладають обмеження на систему. Потрібно відмітити , що обмежує довжину регенераційної ділянки системи : єнергетичний запас чи часові параметри (швидкодія). Якщо обмежують довжину ділянки енергетичні параметри, то можна ослабити вимоги до швидкодії випромінювачів і приймачів, дисперсії ОВ; якщо швидкодія - можна ослабити вимоги до чутливості приймача, потужності випромінювача, типу сигналу, що передається (наприклад вибору коду), втратам в кабелі і роз’ємах.. Вказані пониження вимог дозволить змінити елементну базу ВОСЗ в сторону її спрощення  і зниження її вартості.

Практична частина.

   В даній лабораторній роботі потрібно провести інженерний розрахунок волоконно-оптичної системи передачі для заданих вхідних параметрів. Перед виконанням практичної частини потрібно уважно ознайомитися з теоретичною частиною лабораторної роботи №3, а саме з послідовністю розрахунку і методами покращення параметрів спроектованої системи.                    

                           


Після нажаття клавіші ОК

Для виконання практичної частини потрібно отримати завдання викладача для вхідних параметрів проектованої системи, а саме відстань між кінцевими пунктами системи L, км; швидкість передачі інформації В,Мбіт/с; імовірність помилки для одного регенератора Рпом; довжину хвилі оптичної несучої 0; тип коду, що використовується для кодування сигналів в лінії.

    Після запуску програми всі ці дані вводяться для подальших розрахунків.

     Далі підбираються такі компоненти, які задовільняють вимоги системи до швидкодії, їх параметри записуються в текстовий файл, далі результати інженерного розрахунку також заносяться в цей же файл.Розрахунки потрібно провести для декількох наборів оптичних компонент, довжин хвилі оптичної несучої, а також різної кількості оптичних волокон, по яких ведеться передача і зробити порівняльний аналіз. З отриманих результтів вибрати оптимальний варіант і обовязково включити його в звіт.

Висновок. Ми ознайомилися з послідовністю проектування ВОСПІ,                            методикою інженерного розрахунку волоконно- оптичних систем зв`язку, а також отримали певні навики практичного розрахунку системи для  заданих параметрів.


 

А также другие работы, которые могут Вас заинтересовать

36336. Методы измерения температуры 12.61 KB
  Методы измерения температуры. Существует два метода измерения температуры: контактный метод и бесконтактный. Из всего многообразия методов измерения температуры и измерительных средств в металлургии широкое распространение получили термопреобразователи сопротивления термоэлектрические преобразователи и пирометры излучения. Первые две разновидности датчиков используются для контроля температуры охлаждающей воды подогретых газов и воздуха поступающих к горелочным устройствам отходящих продуктов сгорания футеровки агрегатов жидких металлов...
36337. Назначение и правила выполнения структурной схемы комплекса технических средств автоматизации 54.21 KB
  Назначение и правила выполнения структурной схемы комплекса технических средств автоматизации. В самом общем виде структурная схема системы автоматизации представлена на рисунке 9. Система автоматизации состоит из объекта автоматизации и системы управления этим объектом. Благодаря определенному взаимодействию между объектом автоматизации и системой управления система автоматизации в целом обеспечивает требуемый результат функционирования объекта характеризующийся параметрами х1 х2хn Работа комплексного объекта автоматизации...
36338. Поясните понятие устойчивости линейной САУ. Дайте классификацию методов определения устойчивости и поясните их 41.01 KB
  Дайте классификацию методов определения устойчивости и поясните их. Устойчивость СУ по начм условиям по Ляпунову это свво системы без которого она не работоспособна. устойчива то затухают все составляющее свободных движений вызванных любыми ненулми начми условиями.
36340. Функциональная схема САР развернутым способом с изображением технологического оборудования. 37.53 KB
  Развернутый способ как правило применяют для наиболее сложных объектов автоматизации. Упрощенный способ применяют в основном для несложных объектов автоматизации. Изображение приборов и средств автоматизации при этом способе производят непосредственно на изображении технологического оборудования и трубопроводах. Приборы и средства автоматизации осуществляющие сложные функции контроль регулирование сигнализацию и т.
36341. Приведите классификацию, формулировки критериев устойчивости и поясните их 46.57 KB
  Для более сложных случаев разработаны критерии устойчивости т. Алгебраические позволяют судить об устойчивости по коэффициентам Ар. Критерий Гурвица: Для асимптотической устойчивости необходимо чтобы все миноры данной матрицы были положительными.
36342. SCADA-система iFIX 71.9 KB
  Такие системы обеспечивают получение данных в реальном времени как персоналом предприятия так и прикладным программным обеспечением установленным на предприятии. Представление данных в реальном времени является ключевым для более эффективного использования ресурсов и персонала и для большей степени автоматизации . Для сбора данных системе iFIX не требуется уникальное оборудование. Основой программного обеспечения iFIX является база данных процесса.
36344. Как определяется шаг интегрирования по времени при моделировании САУ с помощью ПК 22.59 KB
  Как определяется шаг интегрирования по времени при моделировании САУ с помощью ПК. Применительно к простому интегратору он может быть представлен таким образом: В конечных приращениях то же самое можно записать в виде: где T постоянная интегрирования звена; Xn Yn соответственно вход и выход звена на nм шаге расчета; t величина интервала времени в течение которого входное воздействие считается постоянным. Суммирование интегрирование выходного параметра производится через интервалы времени t=S в связи с чем этот интервал получил...