42501

Измерение ЭДС источника методом компенсации

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Краткие теоретические сведения ЭДС гальванического элемента не зависит от размеров электродов и количества электролита а определяется лишь их химическим составом и при данных условиях постоянна. Каждый тип элементов даёт определённую ЭДС.1 где  − ЭДС; I − сила тока; R − сопротивление внешней цепи; r − внутреннее сопротивление элемента.

Русский

2013-10-30

69 KB

28 чел.

Лабораторная работа № 8

Измерение ЭДС источника методом компенсации

Цель работы: углубить представление об электродвижущей силе и овладеть одним из методов её измерения.

Оборудование: источник питания (аккумулятор), гальванометр, реостаты, реохорд, ключи, переключатели, нормальный элемент Вестона, исследуемая батарея, соединительные провода.

8.1. Краткие теоретические сведения

ЭДС гальванического элемента не зависит от размеров электродов и количества электролита, а определяется лишь их химическим составом и при данных условиях постоянна. Каждый тип элементов даёт определённую ЭДС. Согласно закону Ома для полной цепи

                                                (8.1)

где   − ЭДС; I − сила тока; R − сопротивление внешней цепи; r − внутреннее сопротивление элемента.

Напряжение во внешней цепи будет U = IR. Из уравнения (8.1) следует, что U =  Ir. Таким образом, напряжение во внешней цепи равно ЭДС источника минус напряжение на внутреннем сопротивлении.

При измерении ЭДС обычным способом с помощью вольтметра вносится погрешность, связанная с потреблением вольтметром тока. Поэтому измеренная им разность потенциалов будет меньше, чем ЭДС. В тех случаях, когда внутреннее сопротивление вольтметра велико (например, для лампового вольтметра), ток в цепи вольтметра мал. Тогда ЭДС с большой степенью точности можно измерить вольтметром. В противном случае для измерения ЭДС необходимо применять специальные методы, например компенсационный метод Поггендорфа − Боша.

Рассмотрим цепь (рис. 8.1). Здесь − батарея аккумуляторов; x − исследуемый элемент; − гальванометр; АВ − калиброванная проволока (реохорд). Если ЭДС исследуемого элемента меньше ЭДС батареи аккумуляторов, то на проволоке всегда можно найти такую точку С, когда в ветви АR1GС (стрелка гальванометра в этом случае будет на нуле).

По второму правилу Кирхгофа для контура АGСА

                         (8.1)

где rx − внутреннее сопротивление исследуемого элемента; rg − сопротивление гальванометра; RAC − сопротивление участка АС.

Если через гальванометр ток не течёт (I2 = 0), то

                                              (8.2)

и в этом случае напряжение на участке АС, создаваемое батареей аккумуляторов, равно ЭДС исследуемого элемента.

Заменим исследуемый элемент нормальным, ЭДС которого известна. Передвигая контакт С, добьёмся положения D такого, при котором ток через гальванометр опять не проходил бы. Тогда выражение (8.2) можно переписать в виде

                                              (8.3)

Ток через участок АВ остаётся прежним, так как в цепи гальванометра тока нет. Разделив (8.2) на выражение (8.3), получим

                                              (8.4)

Ввиду того, что проволока на участке АВ калиброванная, можно записать:

                                              (8.5)

где l1 и l2 − длины участков АС и AD в произвольных единицах.

Зная n и измерив AC = l1 и AD = l2, по (8.5)  вычисляем ЭДС.

8.2. Измерение ЭДС методом компенсации на реохорде

Проволока реохорда АВ, применяющаяся в цепи, натянута на линейку, что позволяет непосредственно отсчитывать длину. В целях защиты элемента и гальванометра от сильных токов (в то время когда ещё не найдены нужные точки) введено последовательно с гальванометром и элементом n довольно большое сопротивление R1. Это сопротивление, предохраняя прибор и нормальный элемент от перегрузки, сильно огрубляет чувствительность метода. Следовательно, для уменьшения погрешности измерений после грубой настройки на нуль показаний гальванометра (и только после этого!) можно повысить чувствительность системы, уменьшая сопротивление R1 (ступенчато, с подстройкой гальванометра на каждой ступени в нулевое положение!).

Включение в цепь исследуемого элемента х и нормального элемента n достигается с помощью переключателя П. Необходимо подключать исследуемый элемент и аккумулятор одноимёнными полюсами к точке А реохорда. В работе применяется высокочувствительный гальванометр, в котором (для более удобного определения отсутствия тока) нуль шкалы находится посередине. В качестве эталонного элемента используется ртутно−кадмиевый элемент Вестона. Положительным полюсом служит ртуть, отрицательным − амальгама кадмия. Электролитом является насыщенный раствор CdSO4, деполяризатором − сульфат ртути. ЭДС нормального элемента мало изменяется со временем, так как мала поляризация. Кроме того, ЭДС этого элемента мало изменяется с температурой. При t = 20 0С она равна 1,0183 В.

Ввиду постоянства ЭДС нормального элемента её удобно сравнивать с другим неизвестным ЭДС. От элемента Вестона нельзя брать ток свыше 10−6 − 10−5 А. Элемент Вестона применяется исключительно в компенсационных схемах.

8.3. Правила по технике безопасности на рабочем месте

  1.  Элемент Вестона не переворачивать (разольётся ртуть)!
  2.  Строго следить: включать сначала ключ, а затем переключатель. Выключать в обратной последовательности.

8.4. Порядок выполнения работы

  1.  Собрать цепь в соответствии со схемой (рис. 8.1). После проверки цепи преподавателем или лаборантом, замкнуть ключ К.
  2.  Подключить с помощью переключателя П к схеме исследуемую батарею.
  3.  Добиться отсутствия тока в цепи гальванометра и записать длину участка l1 = АС.
  4.  Подключить с помощью переключателя П нормальный элемент Вестона и вновь добиться отсутствия тока через гальванометр передвижением движка реохорда. Записать длину участка l2 = АD.
  5.  Пользуясь формулой (8.5), вычислить ЭДС.
  6.  Измерения повторить 5 − 7 раз.

Примечание. Ключ К и переключатель П включать на короткие промежутки времени.

Контрольные вопросы и задания

  1.  Условие существования электрического тока.
  2.  Почему для поддержания постоянной разности потенциалов необходимы силы неэлектростатического происхождения?
  3.  Знать несколько определений ЭДС источника тока.
  4.  Сформулировать 1-е и 2-е правила Кирхгофа.
  5.  Сформулировать правило знаков для 1-го и 2-го правил Кирхгофа.
  6.  В чём заключается метод компенсации?
  7.  Почему исследуемый источник и аккумулятор подключаются к точке А одинаковыми полюсами?

[2, § 67 − 69; 3, § 54, 55, 57, 58; 12; 13, § 28, 51]

53


 

А также другие работы, которые могут Вас заинтересовать

44583. Мобильные сети 83.5 KB
  Скорость передачи от 8 до 34 Кбит с. Они передают данные по существующим для передачи речи сетям в те моменты когда эти сети не заняты. Это очень быстрая технология связи с задержкой в доли секунды что делает ее вполне приемлемой для передачи в реальном масштабе времени.
44584. Базовая эталонная модель архитектуры сети 82 KB
  Сверху вниз от прикладного уровня к физическому; в рамках физического уровня горизонтально по сетевому кабелю к компьютеру – приемнику данных; полученные данные затем двигаются вверх по уровням сетевой модели Сетевая модель ISO OSI определяет сеть в терминах нескольких функциональных уровней. Каждый сетевой уровень включает строго определенные функции и применяет для этого один или несколько протоколов: физический уровень передает данные по сетевым каналам и включает в себя аппаратные...
44585. Основные функции уровней модели OSI 145 KB
  С точки зрения верхних уровней канальный и физический обеспечивают безошибочную передачу пакетов данных. а также алгоритмы переспроса и повторения пакетов. Пример передачи пакетов данных 3. Маршрутизация – существенная функция при работе в глобальных сетях с коммутацией пакетов когда необходимо определить маршрут передачи пакета выполнить перевод логических адресов узлов сети в физические.
44586. Назначение протоколов 37.5 KB
  Отметим три основных момента касающихся протоколов: Существует множество протоколов. В общем случае каждому уровню присущ свой набор правил Уровень Набор правил протокол Прикладной Инициация или прием запроса Представительский Добавление в сообщение форматирующей отображающей и шифрующей информации Сеансовый Добавление информации о трафике – с указанием момента отправки пакета Транспортный Добавление информации для обработки ошибок Сетевой Добавление адресов и информации о месте пакета в последовательности передаваемых пакетов Канальный...
44587. Основные типы протоколов 39.5 KB
  Протоколы этих стеков выполняют работу специальную для своего уровня. Однако коммуникационные задачи которые возложены на сеть приводят к разделению протоколов на три типа: прикладные протоколы; транспортные протоколы и сетевые протоколы. Уровни модели OSI и соответствующие им типы протоколов Прикладные протоколы работают на верхнем уровне модели OSI и обеспечивают взаимодействие приложений и обмен данными между ними. Транспортные протоколы поддерживают сеансы связи между компьютерами и гарантируют надежный обмен данными между ними.
44588. Наиболее распространенные стеки протоколов 32.5 KB
  Стек TCP IP включает в себя два основных протокола: TCP Trnsmission Control Protocol – протокол для гарантированной доставки данных разбитых на последовательность фрагментов. IP Internet Protocol – протокол для передачи пакетов относится к разряду сетевых протоколов. Стек TCP IP является промышленным стандартным набором протоколов которые обеспечивают связь в неоднородной среде т.
44589. Передача данных по сети 53.5 KB
  Пример передачи данных 1 Компьютер-отправитель устанавливает соединение с принтсервером. Если бы использовался более сложный протокол и соответствующие ему сетевые службы то время передачи увеличилось бы но зато повысилась бы достоверность передачи. Указанный в пакете адрес отправителя в этом случае использовался бы сетевой службой для формирования подтверждения и передачи его соответствующему приемнику.
44590. Стандарт 10BaseT 39.5 KB
  ЛВС стандарта 10BseT может обслуживать до 1024 компьютеров. Сеть стандарта 10BseT Достоинством является возможность использования распределительных стоек и панелей коммутации что позволяет легко перекоммутировать сеть или добавить новый узел без остановки работы сети.