42501

Измерение ЭДС источника методом компенсации

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Краткие теоретические сведения ЭДС гальванического элемента не зависит от размеров электродов и количества электролита а определяется лишь их химическим составом и при данных условиях постоянна. Каждый тип элементов даёт определённую ЭДС.1 где  − ЭДС; I − сила тока; R − сопротивление внешней цепи; r − внутреннее сопротивление элемента.

Русский

2013-10-30

69 KB

28 чел.

Лабораторная работа № 8

Измерение ЭДС источника методом компенсации

Цель работы: углубить представление об электродвижущей силе и овладеть одним из методов её измерения.

Оборудование: источник питания (аккумулятор), гальванометр, реостаты, реохорд, ключи, переключатели, нормальный элемент Вестона, исследуемая батарея, соединительные провода.

8.1. Краткие теоретические сведения

ЭДС гальванического элемента не зависит от размеров электродов и количества электролита, а определяется лишь их химическим составом и при данных условиях постоянна. Каждый тип элементов даёт определённую ЭДС. Согласно закону Ома для полной цепи

                                                (8.1)

где   − ЭДС; I − сила тока; R − сопротивление внешней цепи; r − внутреннее сопротивление элемента.

Напряжение во внешней цепи будет U = IR. Из уравнения (8.1) следует, что U =  Ir. Таким образом, напряжение во внешней цепи равно ЭДС источника минус напряжение на внутреннем сопротивлении.

При измерении ЭДС обычным способом с помощью вольтметра вносится погрешность, связанная с потреблением вольтметром тока. Поэтому измеренная им разность потенциалов будет меньше, чем ЭДС. В тех случаях, когда внутреннее сопротивление вольтметра велико (например, для лампового вольтметра), ток в цепи вольтметра мал. Тогда ЭДС с большой степенью точности можно измерить вольтметром. В противном случае для измерения ЭДС необходимо применять специальные методы, например компенсационный метод Поггендорфа − Боша.

Рассмотрим цепь (рис. 8.1). Здесь − батарея аккумуляторов; x − исследуемый элемент; − гальванометр; АВ − калиброванная проволока (реохорд). Если ЭДС исследуемого элемента меньше ЭДС батареи аккумуляторов, то на проволоке всегда можно найти такую точку С, когда в ветви АR1GС (стрелка гальванометра в этом случае будет на нуле).

По второму правилу Кирхгофа для контура АGСА

                         (8.1)

где rx − внутреннее сопротивление исследуемого элемента; rg − сопротивление гальванометра; RAC − сопротивление участка АС.

Если через гальванометр ток не течёт (I2 = 0), то

                                              (8.2)

и в этом случае напряжение на участке АС, создаваемое батареей аккумуляторов, равно ЭДС исследуемого элемента.

Заменим исследуемый элемент нормальным, ЭДС которого известна. Передвигая контакт С, добьёмся положения D такого, при котором ток через гальванометр опять не проходил бы. Тогда выражение (8.2) можно переписать в виде

                                              (8.3)

Ток через участок АВ остаётся прежним, так как в цепи гальванометра тока нет. Разделив (8.2) на выражение (8.3), получим

                                              (8.4)

Ввиду того, что проволока на участке АВ калиброванная, можно записать:

                                              (8.5)

где l1 и l2 − длины участков АС и AD в произвольных единицах.

Зная n и измерив AC = l1 и AD = l2, по (8.5)  вычисляем ЭДС.

8.2. Измерение ЭДС методом компенсации на реохорде

Проволока реохорда АВ, применяющаяся в цепи, натянута на линейку, что позволяет непосредственно отсчитывать длину. В целях защиты элемента и гальванометра от сильных токов (в то время когда ещё не найдены нужные точки) введено последовательно с гальванометром и элементом n довольно большое сопротивление R1. Это сопротивление, предохраняя прибор и нормальный элемент от перегрузки, сильно огрубляет чувствительность метода. Следовательно, для уменьшения погрешности измерений после грубой настройки на нуль показаний гальванометра (и только после этого!) можно повысить чувствительность системы, уменьшая сопротивление R1 (ступенчато, с подстройкой гальванометра на каждой ступени в нулевое положение!).

Включение в цепь исследуемого элемента х и нормального элемента n достигается с помощью переключателя П. Необходимо подключать исследуемый элемент и аккумулятор одноимёнными полюсами к точке А реохорда. В работе применяется высокочувствительный гальванометр, в котором (для более удобного определения отсутствия тока) нуль шкалы находится посередине. В качестве эталонного элемента используется ртутно−кадмиевый элемент Вестона. Положительным полюсом служит ртуть, отрицательным − амальгама кадмия. Электролитом является насыщенный раствор CdSO4, деполяризатором − сульфат ртути. ЭДС нормального элемента мало изменяется со временем, так как мала поляризация. Кроме того, ЭДС этого элемента мало изменяется с температурой. При t = 20 0С она равна 1,0183 В.

Ввиду постоянства ЭДС нормального элемента её удобно сравнивать с другим неизвестным ЭДС. От элемента Вестона нельзя брать ток свыше 10−6 − 10−5 А. Элемент Вестона применяется исключительно в компенсационных схемах.

8.3. Правила по технике безопасности на рабочем месте

  1.  Элемент Вестона не переворачивать (разольётся ртуть)!
  2.  Строго следить: включать сначала ключ, а затем переключатель. Выключать в обратной последовательности.

8.4. Порядок выполнения работы

  1.  Собрать цепь в соответствии со схемой (рис. 8.1). После проверки цепи преподавателем или лаборантом, замкнуть ключ К.
  2.  Подключить с помощью переключателя П к схеме исследуемую батарею.
  3.  Добиться отсутствия тока в цепи гальванометра и записать длину участка l1 = АС.
  4.  Подключить с помощью переключателя П нормальный элемент Вестона и вновь добиться отсутствия тока через гальванометр передвижением движка реохорда. Записать длину участка l2 = АD.
  5.  Пользуясь формулой (8.5), вычислить ЭДС.
  6.  Измерения повторить 5 − 7 раз.

Примечание. Ключ К и переключатель П включать на короткие промежутки времени.

Контрольные вопросы и задания

  1.  Условие существования электрического тока.
  2.  Почему для поддержания постоянной разности потенциалов необходимы силы неэлектростатического происхождения?
  3.  Знать несколько определений ЭДС источника тока.
  4.  Сформулировать 1-е и 2-е правила Кирхгофа.
  5.  Сформулировать правило знаков для 1-го и 2-го правил Кирхгофа.
  6.  В чём заключается метод компенсации?
  7.  Почему исследуемый источник и аккумулятор подключаются к точке А одинаковыми полюсами?

[2, § 67 − 69; 3, § 54, 55, 57, 58; 12; 13, § 28, 51]

53


 

А также другие работы, которые могут Вас заинтересовать

39441. Создание качественных каналов и связи на направлении МИНСК-ГРОДНО (через ЛИДУ) 326.5 KB
  Основные параметры системы передачи Параметр Значение параметра Число организуемых каналов 480 Скорость передачи информации кбит с 34368 Тип линейного кода HDB3 или MI Амплитуда импульсов в линии В 302 Расчетная частота кГц 17186 Номинальное затухание участка регенерации дБ 65 Номинальное значение тока ДП мА 200 Допустимые значения напряжения ДП В 401300650 относительно земли Максимальное расстояние ОРПОРП 200 км Максимальное число НРП между ОРП 66 Максимальное число НРП в полу секции ДП 33 Комплекс аппаратуры...
39442. Использование каналов цифровых систем для передачи дискретных сигналов 190.5 KB
  В состав аппаратуры ИКМ120у входят: аналогоцифровое оборудование формирования стандартных первичных цифровых потоков АЦО оборудование вторичного временного группообразования ВВГ оконечное оборудование линейного тракта ОЛТ необслуживаемые регенерационные пункты НРП. Оборудование ОЛТ обеспечивает согласование выхода оборудования ВВГ с линейным трактом дистанционное питание ДП НРП телеконтроль ТК и сигнализацию о состоянии линейного тракта СС между оконечными и промежуточными пунктами. Для размещения НРП необходимо определить...
39443. ПРОЕКТИРОВАНИЕ МЕЖДУГОРОДНЕЙ ЦИФРОВОЙ ЛИНИИ ПЕРЕДАЧИ 446 KB
  Размещение НРП вдоль кабельной линии передачи осуществляется в соответствии с номинальной длиной регенерационного участка РУ для проектируемой ЦСП. блоки регенераторов в НРП не содержат искусственных линий ИЛ. Необходимое число НРП определяется по формуле: N=n1; N1=10; N2=16. Из произведенных расчетов следует что между ОП1 и ПВ потребуется установить 10 НРП между ОП2 и ПВ 16.
39444. Создание качественных каналов на направлении Витебск – Глубокое – Браслав 308.5 KB
  В состав аппаратуры входят: оборудование вторичного временного преобразования ВВГ оконечное оборудование линейного тракта ОЛТ необслуживаемые регенерационные пункты НРП а также комплект контрольноизмерительных приборов КИП. Оконечное оборудование линейного тракта обеспечивает согласование выхода оборудования ВВГ с линейным трактом дистанционное питание НРП телеконтроль и сигнализацию о состоянии линейного тракта служебную связь между оконечными и промежуточными пунктами. Оборудование НРП аппаратуры ИКМ120У включает в себя блоки...
39445. Разработка линии связи между ОП1 (Витебск) и ОП2 (Гродно) через ПВ (Лида) 409.5 KB
  Основные параметры системы передачи ИКМ480 Параметр Значение параметра Число организуемых каналов 480 Скорость передачи информации кбит с 34 368 Тип линейного кода КВП3 или ЧПИ Расчетная частота кГц 34 368 Номинальное затухание участка регенерации дБ 65 Номинальное значение тока ДП мА 200 Допустимые значения напряжения ДП В 1300 Максимальное расстояние ОРПОРП 201 км Максимальное число НРП между ОРП 66 Максимальное число НРП в полусекции ДП 33 Номинальная длина регенерационного участка км Комплекс аппаратуры ЦСП ИКМ480...
39447. Цифровая система передачи (ИКМ-120 или ИКМ-480) 397 KB
  В состав аппаратуры ИКМ120у входят аналогоцифровое оборудование формирования стандартных первичных цифровых потоков АЦО оборудование вторичного временного группообразования ВВГ оконечное оборудование линейного тракта ОЛТ необслуживаемые регенерационные пункты НРП. Оконечное оборудование линейного тракта обеспечивает согласование выхода оборудования ВВГ с линейным трактом дистанционное питание НРП телеконтроль и сигнализацию о состоянии линейного тракта служебную связь между оконечными и промежуточными пунктами. Оборудование НРП...