42501

Измерение ЭДС источника методом компенсации

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Краткие теоретические сведения ЭДС гальванического элемента не зависит от размеров электродов и количества электролита а определяется лишь их химическим составом и при данных условиях постоянна. Каждый тип элементов даёт определённую ЭДС.1 где  − ЭДС; I − сила тока; R − сопротивление внешней цепи; r − внутреннее сопротивление элемента.

Русский

2013-10-30

69 KB

28 чел.

Лабораторная работа № 8

Измерение ЭДС источника методом компенсации

Цель работы: углубить представление об электродвижущей силе и овладеть одним из методов её измерения.

Оборудование: источник питания (аккумулятор), гальванометр, реостаты, реохорд, ключи, переключатели, нормальный элемент Вестона, исследуемая батарея, соединительные провода.

8.1. Краткие теоретические сведения

ЭДС гальванического элемента не зависит от размеров электродов и количества электролита, а определяется лишь их химическим составом и при данных условиях постоянна. Каждый тип элементов даёт определённую ЭДС. Согласно закону Ома для полной цепи

                                                (8.1)

где   − ЭДС; I − сила тока; R − сопротивление внешней цепи; r − внутреннее сопротивление элемента.

Напряжение во внешней цепи будет U = IR. Из уравнения (8.1) следует, что U =  Ir. Таким образом, напряжение во внешней цепи равно ЭДС источника минус напряжение на внутреннем сопротивлении.

При измерении ЭДС обычным способом с помощью вольтметра вносится погрешность, связанная с потреблением вольтметром тока. Поэтому измеренная им разность потенциалов будет меньше, чем ЭДС. В тех случаях, когда внутреннее сопротивление вольтметра велико (например, для лампового вольтметра), ток в цепи вольтметра мал. Тогда ЭДС с большой степенью точности можно измерить вольтметром. В противном случае для измерения ЭДС необходимо применять специальные методы, например компенсационный метод Поггендорфа − Боша.

Рассмотрим цепь (рис. 8.1). Здесь − батарея аккумуляторов; x − исследуемый элемент; − гальванометр; АВ − калиброванная проволока (реохорд). Если ЭДС исследуемого элемента меньше ЭДС батареи аккумуляторов, то на проволоке всегда можно найти такую точку С, когда в ветви АR1GС (стрелка гальванометра в этом случае будет на нуле).

По второму правилу Кирхгофа для контура АGСА

                         (8.1)

где rx − внутреннее сопротивление исследуемого элемента; rg − сопротивление гальванометра; RAC − сопротивление участка АС.

Если через гальванометр ток не течёт (I2 = 0), то

                                              (8.2)

и в этом случае напряжение на участке АС, создаваемое батареей аккумуляторов, равно ЭДС исследуемого элемента.

Заменим исследуемый элемент нормальным, ЭДС которого известна. Передвигая контакт С, добьёмся положения D такого, при котором ток через гальванометр опять не проходил бы. Тогда выражение (8.2) можно переписать в виде

                                              (8.3)

Ток через участок АВ остаётся прежним, так как в цепи гальванометра тока нет. Разделив (8.2) на выражение (8.3), получим

                                              (8.4)

Ввиду того, что проволока на участке АВ калиброванная, можно записать:

                                              (8.5)

где l1 и l2 − длины участков АС и AD в произвольных единицах.

Зная n и измерив AC = l1 и AD = l2, по (8.5)  вычисляем ЭДС.

8.2. Измерение ЭДС методом компенсации на реохорде

Проволока реохорда АВ, применяющаяся в цепи, натянута на линейку, что позволяет непосредственно отсчитывать длину. В целях защиты элемента и гальванометра от сильных токов (в то время когда ещё не найдены нужные точки) введено последовательно с гальванометром и элементом n довольно большое сопротивление R1. Это сопротивление, предохраняя прибор и нормальный элемент от перегрузки, сильно огрубляет чувствительность метода. Следовательно, для уменьшения погрешности измерений после грубой настройки на нуль показаний гальванометра (и только после этого!) можно повысить чувствительность системы, уменьшая сопротивление R1 (ступенчато, с подстройкой гальванометра на каждой ступени в нулевое положение!).

Включение в цепь исследуемого элемента х и нормального элемента n достигается с помощью переключателя П. Необходимо подключать исследуемый элемент и аккумулятор одноимёнными полюсами к точке А реохорда. В работе применяется высокочувствительный гальванометр, в котором (для более удобного определения отсутствия тока) нуль шкалы находится посередине. В качестве эталонного элемента используется ртутно−кадмиевый элемент Вестона. Положительным полюсом служит ртуть, отрицательным − амальгама кадмия. Электролитом является насыщенный раствор CdSO4, деполяризатором − сульфат ртути. ЭДС нормального элемента мало изменяется со временем, так как мала поляризация. Кроме того, ЭДС этого элемента мало изменяется с температурой. При t = 20 0С она равна 1,0183 В.

Ввиду постоянства ЭДС нормального элемента её удобно сравнивать с другим неизвестным ЭДС. От элемента Вестона нельзя брать ток свыше 10−6 − 10−5 А. Элемент Вестона применяется исключительно в компенсационных схемах.

8.3. Правила по технике безопасности на рабочем месте

  1.  Элемент Вестона не переворачивать (разольётся ртуть)!
  2.  Строго следить: включать сначала ключ, а затем переключатель. Выключать в обратной последовательности.

8.4. Порядок выполнения работы

  1.  Собрать цепь в соответствии со схемой (рис. 8.1). После проверки цепи преподавателем или лаборантом, замкнуть ключ К.
  2.  Подключить с помощью переключателя П к схеме исследуемую батарею.
  3.  Добиться отсутствия тока в цепи гальванометра и записать длину участка l1 = АС.
  4.  Подключить с помощью переключателя П нормальный элемент Вестона и вновь добиться отсутствия тока через гальванометр передвижением движка реохорда. Записать длину участка l2 = АD.
  5.  Пользуясь формулой (8.5), вычислить ЭДС.
  6.  Измерения повторить 5 − 7 раз.

Примечание. Ключ К и переключатель П включать на короткие промежутки времени.

Контрольные вопросы и задания

  1.  Условие существования электрического тока.
  2.  Почему для поддержания постоянной разности потенциалов необходимы силы неэлектростатического происхождения?
  3.  Знать несколько определений ЭДС источника тока.
  4.  Сформулировать 1-е и 2-е правила Кирхгофа.
  5.  Сформулировать правило знаков для 1-го и 2-го правил Кирхгофа.
  6.  В чём заключается метод компенсации?
  7.  Почему исследуемый источник и аккумулятор подключаются к точке А одинаковыми полюсами?

[2, § 67 − 69; 3, § 54, 55, 57, 58; 12; 13, § 28, 51]

53


 

А также другие работы, которые могут Вас заинтересовать

34343. Сырьевые материалы и основы производства резины 28 KB
  Резину изготавливают с помощью вулканизации. В результате вулканизации каучук превращается в прочную эластичную упругую массу резину. В результате вулканизации молекулы каучука сливаются между собой дисульфидными мостиками в одну трехмерную макромолекулу. Большую роль играют так называемые ускорители вулканизации органические соединения содержащие серу или азот меркаптобензтиазол дифенилгуанидин и др.
34344. Основные свойства и назначения природных и искусственных строительных материалов 21 KB
  Основные свойства и назначения природных и искусственных строительных материалов. Основные свойства строительных материалов можно разделить на несколько групп. К 1ой группе относятся физические свойства материалов: плотность и пористость. Ко 2й свойства характеризующие устойчивость материала к воздействию воды и низких температур: водопоглощение влажность влагоотдача гигроскопичность водопроницаемость водо морозостойкость.
34345. Классификация и свойства керамических материалов 21.5 KB
  Классификация и свойства керамических материалов Керамические строительные материалы это искусственные каменные изделия получаемые из глиняных масс с добавками или без добавок других материалов путем формования и последующего обжига. Керамические материалы и изделия классифицируются по различным признакам. В зависимости от структуры керамические материалы разделяют на две основные группы: Плотные спекшиеся имеющие блестящий раковистый излом не пропускающие воду с водопоглощением менее 5 клинкерный кирпич для мощения дорог плитки для...
34346. Технология производства керамического кирпича 23 KB
  Технология производства керамического кирпича Несмотря на обширный ассортимент разнообразие форм и свойств керамических изделий основные этапы их производства являются общими и включают следующие стадии: Карьерные работы добыча транспортирование и хранение запаса глин подготовку глиняной массы формование изделий сушку отформованных изделий обжиг высушенных изделий обработку изделий глазурование ангобирование и прочее и упаковку. Формование изделий осуществляется преимущественно на прессах: при первом способе подготовке глиняной...
34347. Основные свойства, классификация и назначение стеклянных изделий 22 KB
  Материалы и изделия из стекла применяемые в строительстве в зависимости от назначения разделяются на следующие группы: Материалы для заполнения проемов зданий и сооружений наиболее обширная группа строительных материалов из стекла включающая листовые стекла различных видов и стеклопакеты; в свою очередь листовое стекло подразделяется на листовое оконное витринное полированное и неполированное армированное узорчатое увиолевое трехслойное закаленное и др.; Материалы для строительных конструкций профильное стекло стеклоблоки;...
34348. Производство листового стекла, труб 24 KB
  Производство листового стекла труб. Это изделие из стекла в виде плоских листов отношение толщины которых к длине сравнительно невелико и составляет приблизительно 015 15. Стекольной промышленностью вырабатывается широкий ассортимент листового стекла: обычное оконное витринное полированное и неполированное армированное узорчатое увиолевое трехслойное и др. Производство строительного стекла включает следующие основные операции: подготовку сырьевых материалов приготовление стекольной шихты варку стекла формование изделий отжиг...
34349. Технология производства сортового и тарного стекла 21 KB
  Сфе изделия поступают на отжиг вырабатывают изделия бригадным способом. При механическом сплавах для формирования машины производятся изделия прем.
34350. Сравнительная экономическая оценка разных видов стекла 22.5 KB
  Сравнительная экономическая оценка разных видов стекла. Основными направлениями интенсификации прва стекла являются:1дальнейшие автоматизации техн прв; 2 расширение ассортимента и повышение качества стекла; 3реконструкция действующей прти; ;4 совершенствования техн прва стр стекла. Усовершенствование методов варки стекла предполагает увеличение площади покрытия пламенем зеркала шихты и стекломассы применением печей новых типов. велики амортизационные отчисления при его производстве высокая стоимость оборудования для флотационного...
34351. Классификация, основные свойства и назначение минеральных вяжущих материалов 23 KB
  Минеральные вяжущие вещества по способности затвердевать и сохранять прочность на воздухе или в воде подразделяют на воздушные и гидравлические. Воздушные вяжущие вещества после смешивания с водой твердеют прочность получающегося камня сохраняется или повышается только на воздухе. Поэтому такие вяжущие применяют при возведении надземных сооружений не подвергающихся действию воды. Гидравлические вяжущие вещества обладают этими свойствами не только на воздухе но и в воде их применяют в надземных подземных...