42513

Физические основы работы ионных приборов

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Положительные ионы под действием поля устремляются к катоду, бомбардируют его поверхность и вырывают из катода вторичные электроны (поверхностная ионизация). Такое явление называется вторичной эмиссией. Возникающие электроны вторичной эмиссии, ускоряемые полем, также включатся в процесс объёмной ионизации газа.

Русский

2013-10-30

101.5 KB

9 чел.

Лабораторная работа № 15

Физические основы работы ионных приборов

Цель работы: изучить процессы при самостоятельном разряде в газах и физические основы работы тиратрона; научиться снимать пусковую характеристику тиратрона.

Оборудование: тиратрон МТХ-90, два сопротивления на панели, два вольтметра, микроамперметр, миллиамперметр, два источника постоянного регулируемого напряжения.

15.1. Краткие теоретические сведения

В группе газоразрядных ионных приборов особый интерес представляют газоразрядные приборы с холодным катодом. В переносе электрических зарядов в разрядном промежутке таких приборов участвуют не только электроны, но и положительные ионы. В отсутствие поля небольшое количество свободных электронов и ионов присутствует в результате действия космического излучения, фотоэффекта на катоде и других причин. При наложении поля через межэлектродный промежуток течёт ток вследствие дрейфового движения электронов и ионов. Электроны ускоряются электрическим полем, и, как только их энергия становится равной или большей энергии ионизации атомов газа, ионизируют атомы при столкновении. Вылетающие электроны также ускоряются полем и могут сами ионизировать атомы газа по достижении их энергии значений, достаточных для ионизации. Вторичные электроны, затратив энергию на ионизацию, затем вновь ускоряются полем и ионизируют газ и т.д. Таким образом, к аноду направляется лавина электронов, а ионизация возникает во всём объёме (объёмная ионизация).

Положительные ионы под действием поля устремляются к катоду, бомбардируют его поверхность и вырывают из катода вторичные электроны (поверхностная ионизация). Такое явление называется вторичной эмиссией. Возникающие электроны вторичной эмиссии, ускоряемые полем, также включатся в процесс объёмной ионизации газа.

Атомы газа при столкновении с электронами, энергия которых меньше энергии ионизации, переходят в так называемые возбуждённые состояния. Эти состояния неустойчивы и, спустя промежуток времени порядка 10−8 с, атомы вновь возвращаются в невозбуждённое состояние, испуская фотоны, энергия которых равна разности энергий возбуждённого и невозбуждённого состояний атома. Фотоны, попадая на катод, способны вырывать из него электроны, если их энергия больше работы выхода из данного катода (явление фотоэффекта). Вылетевшие фотоэлектроны, ускоряемые полем, также включаются в процесс ионизации газа.

Наряду с процессом ионизации в газе протекает и процесс рекомбинации (т.е. образование нейтральных атомов при столкновении электронов с положительными ионами, сопровождающееся свечением газа), несколько ослабляющий процесс ионизации.

Напряжение, при котором в процессах объёмной и поверхностной ионизации и рекомбинации образуется самостоятельный разряд в газе, называется напряжением зажигания Uзаж. Напряжение зажигания уменьшается при снижении концентрации (давления) атомов или молекул газа, поскольку при этом увеличивается их средняя длина свободного пробега в ускоряющем поле, и энергии ионизации они достигают при меньшей напряжённости электрического поля.

15.2. Принцип работы тиратрона МТХ-90

Тиратрон МТХ-90 − прибор тлеющего разряда − представляет собой миниатюрный баллон, заполненный неоном при давлении около 103 Па, в который впаяны три электрода. Катод выполнен в виде никелевого цилиндра диаметром 8 мм и длиной 12 мм, покрытого внутри цезием (с малой работой выхода). Анодом лампы служит торец молибденовой проволоки диаметром 0,5 … 0,6 мм, заключённый у торца в стеклянный чехол. Сетка расположена вблизи катода так, чтобы напряжение зажигания разряда между ней и катодом было меньше, чем между анодом и катодом.

На основной разрядный промежуток анод-катод (рис. 15.1) подаётся питающее напряжение, удовлетворяющее условию

где  − напряжения соответственно горения и зажигания промежутка анод-катод.

При таком напряжении в анодной цепи разряд самопроизвольно не зажигается, но зажжённый разряд будет гореть. Если теперь подать пусковое напряжение на сетку, то в управляющем промежутке сетка-катод зажигается разряд, и в цепи сетки под действием напряжения пускового сигнала возникает ток самостоятельного разряда. Часть электронов из промежутка между сеткой и катодом будет диффундировать в пространство между сеткой и анодом, создавая там начальную проводимость. При этом разряд в цепи сетки является как бы внешним ионизатором для разрядного промежутка анод − катод. Чем больше ток сетки Iп, тем больше начальная проводимость промежутка анод − сетка и тем меньше напряжение зажигания . Зависимость между током сетки и напряжением зажигания  называется пусковой характеристикой тиратрона. Усреднённая пусковая характеристика для МТХ-90 показана на рис. 15.2.

Таким образом, током сетки в несколько микроампер можно в цепи анода зажечь разряд и возбудить там ток до нескольких десятков миллиампер, а при коротком импульсе − до десятых долей ампера, т.е. тиратрон позволяет увеличивать сигнал по току в сотни и более раз.

Возникающий разряд в цепи анода не может быть погашен последующим уменьшением тока сетки или даже подачей отрицательного напряжения на сетку. Последнее объясняется тем, что положительные ионы, заполняющие лампу, нейтрализуют потенциал сетки.

Тиратроны применяются в различных автоматических устройствах для быстрого включения различных агрегатов, контроля за температурой в управляемых выпрямителях, в которых путём изменения потенциала сетки можно без лишних потерь энергии регулировать выпрямленное напряжение.

Тиратрон небольшой мощности ТГ-0,1/0,3 с газовым наполнением, средний ток < 0,1 А, наибольшее допустимое обратное напряжение 0,3 кВ.

Тиратрон ТР-6/15 наполнен парами ртути, средний ток 6,5 А, наибольшее допустимое обратное напряжение 15 кВ.

Порядок выполнения работы

  1.  Собрать и опробовать схему (рис. 15.1): при отключенной сетке плавно подать напряжение на анод до зажигания тиратрона, записать напряжение зажигания Uзаж в табл. 15.1.
  2.  Погасить тиратрон (уменьшить U до нуля).
  3.  Подключить сетку, включить тумблером источник постоянного регулируемого напряжения, питающий цепь катод-сетка. Подать напряжение на сетку, установив ток сетки Iп = 2 мкА. Значение Uп записать в табл. 15.1.
  4.  Плавно увеличивая напряжение на аноде, зажечь тиратрон и записать в табл. 15.1 значения Iп, Iа и Uагор.
  5.  Продолжить измерения при пусковых токах 4, 6, 8, 10, 12, 14 и 16 мкА.
  6.  Построить пусковую характеристику тиратрона.
  7.  Определить коэффициенты усиления тиратрона по току  и мощности
  8.  Провести аппроксимацию полученных экспериментальных данных экспоненциальной регрессией, воспользовавшись программой, данной в приложении. Получить аналитическое выражение зависимости .

Измерения производить при номинальном для данного типа тиратрона пусковом токе в режиме горения.

Таблица 15.1.

I п, А

Uп, В

Uа, В

Iа, мА

Uзаж, В

ki

kp

0

2

4

6

8

10

12

14

16

Контрольные вопросы и задания

  1.  Каков механизм самостоятельного газового разряда?
  2.  Различия в действии сетки ионных и электронных приборов.
  3.  Устройство и принцип действия тиратрона.
  4.  Нарисовать схему включения и пусковую характеристику тиратрона.
  5.  Почему при зажигании тиратрона резко падает напряжение на промежутке анод-катод?
  6.  Изменится ли сила анодного тока в «горящем» тиратроне при увеличении потенциала на пусковом электроде?
  7.  Преимущества тиратрона с холодным катодом по сравнению с другими коммутирующими приборами.
  8.  Применение тиратронов.

[2, § 167, 170; 5, § 87, 90]

Приложение

Программа для обработки данных лабораторной работы № 15

1 '"Экспоненциальная регрессия y(x) = bo * exp(b1*x)

10 CLS : INPUT "Введите число точек: N ="; N

20 DIM X(N), Y(N): A = 0: B = 0: C = 0: D = 0

30 PRINT "Введите попарно X(I) и Y(I):"

40 FOR I = 1 TO N

50 PRINT : PRINT "X("; I; ") ="; : INPUT X(I)

60 PRINT : PRINT "Y("; I; ") ="; : INPUT Y(I)

70 X = X(I): Y = LOG(Y(I)): A = A + X: B = B + Y: E = E + Y * Y

80 C = C + X * X: D = D + X * Y

90 NEXT I

100 B1 = (A * B - N * D) / (A ^ 2 - N * C)

110 B0 = EXP((B - B1 * A) / N)

120 PRINT : PRINT " Y(X) = "; B0; "* exp("; B1; "*X)."

130 R = (D - A * B / N) / SQR((C - A * A / N) * (E - B * B / N))

140 PRINT : PRINT "Коэффициент корреляции: R ="; R

150 PRINT : INPUT "Введите X ="; X

160 PRINT : PRINT "Y(X) ="; B0 * EXP(B1 * X)

170 INPUT "Продолжить? (y/n)"; A$

180 IF A$ = "n" THEN 1000

190 IF A$ <> "y" THEN 170

200 GOTO 150

1000 K2 = 1: YK = -70: X5 = INT(X(1)): X6 = INT(X(N)) + 1: Y3 = Y(1): IF Y(N) > Y(1) THEN Y3 = Y(N)

1005 CLS : SCREEN 2

1010 C3 = 2.4: C1 = ABS(C3 * 260 / (X6 - X5)): C4 = 20 / 155: C5 = 76 / C3 / 260: Y0 = 75

1015 Y1 = INT((Y0 - YK) * C4) + 4: IF Y1 <= 0 OR Y1 > 23 THEN 1030

1020 LOCATE Y1, 1: PRINT X5: LOCATE Y1, 75: PRINT X6

1030 X0 = 260 * (-X5) / (X6 - X5)

1040 LINE (0, Y0 - YK)-(C3 * 260, Y0 - YK), 5

1050 LINE (X0 * C3 + 4, 0)-(X0 * C3 + 4, 155), 5

1060 XC = C1 * (X5 - INT(X5)): XC1 = C1 * (-X5 + INT(X6)): GOSUB 2000

1065 FOR I = 1 TO N

1070 XI = (-X5 + X(I)) * C1 + 4: YI = -K2 * Y(I) / ABS(Y3) * 140 + Y0

1075 LINE (XI - 4, YI - YK - 4)-(XI + 4, YI - YK + 4), 5, B

1080 NEXT I

1085 FOR I = C1 - XC TO XC1 STEP K1

1090 LINE (I + 4, Y0 - YK)-(I + 4, Y0 - YK - 5), 8

1095 NEXT I

1100 FOR Z = X5 TO X6 STEP (X6 - X5) / 300

1110 GOSUB 3000

1130 XZ = (-X5 + Z) * C1 + 4: YZ = -K2 * Y / ABS(Y3) * 140 + Y0

1140 PSET (XZ, YZ - YK), 8

1150 NEXT Z

1160 LOCATE 21, 1: INPUT "Если нужно изменить масштаб по вертикали, введите коэффициент: K ="; KK: K2 = KK * K2

1165 IF K2 = 0 THEN RUN: GOSUB 4000

1170 LOCATE 21, 1: INPUT "Если нужно сместить график по вертикали, введите соответствующее значение: YK ="; YY: YK = YK + YY

1175 GOSUB 4000

1180 LOCATE 21, 1: INPUT "Нужно изменить пределы исследования? (y/n):"; B$

1190 IF B$ = "n" OR B$ = "N" THEN 1005

1195 IF B$ <> "y" THEN 1180: GOSUB 4000

1200 LOCATE 21, 1: INPUT "Введите нижний предел:                                          Z1 ="; X5

1210 LOCATE 22, 1: INPUT "Введите верхний предел:                                          Z2 ="; X6

1220 GOTO 1005

2000 K1 = C1

2010 FOR I = 1 TO 100

2020 IF K1 < 20 THEN K1 = K1 * 10

2030 NEXT I

2040 RETURN

3000 IF ABS(B1 * Z) > 80 THEN 3020

3010 Y = B0 * EXP(B1 * Z)

3020 RETURN

4000 LOCATE 21, 1: PRINT "                                                                                "

4010 LOCATE 22, 1: PRINT "                                                                               "

4020 LOCATE 23, 1: PRINT "                                                                               "

4030 RETURN

115


 

А также другие работы, которые могут Вас заинтересовать

84072. Особенности сердечнососудистой системы у детей младшего возраста 31.68 KB
  Сердце и сосуды у детей значительно отличаются от сердечнососудистой системы взрослых. Рост сердца у детей идет во всех направлениях но неравномерно т. У новорожденных и детей первых 05 2 лет жизни сердце расположено поперечно и более высоко.
84073. Репродуктивная система человека 30.41 KB
  Репродуктивная система комплекс органов и систем которые обеспечивают процесс оплодотворения способствуют воспроизводству человека. Мужская репродуктивная система система органов расположенных снаружи тела около таза которые принимают участие в процессе репродукции. Репродуктивная система женщины состоит из органов расположенных преимущественно внутри тела в тазовой области.
84074. Половое созревание, регуляция полового созревания 33.51 KB
  Еще до появления первой менструации отмечается усиление функции гипофиза и яичников. В последние годы раскрыты новые механизмы становления и регуляции репродуктивной функции. Важная роль в регуляции репродуктивной функции принадлежит эндогенным опиатам энкефалины и их производные пре и проэнкефалины лейморфин неоэндорфины динорфин которые оказывают морфиноподобное действие и были выделены в центральных и периферических структурах нервной системы в середине 1970х годов. Данные о роли нейротрансмиттеров и влиянии через них эндогенных...
84075. Терморегуляция, виды терморегуляции 31.19 KB
  Различают несколько механизмов отдачи тепла в окружающую среду. Излучение отдача тепла в виде электромагнитных волн инфракрасного диапазона. Количество тепла рассеиваемого организмом в окружающую среду излучением пропорционально площади поверхности излучения площади поверхности тела не покрытой одеждой и градиенту температуры. При температуре окружающей среды 20с и относительной влажности воздуха 4060 организм взрослого человека рассеивает путём излучения около 4050 всего отдаваемого тепла.
84076. Терморегуляция у детей младшего возраста 31.18 KB
  Температура тела ребенка в первые месяцы жизни не вполне постоянна. Она может изменяться под влиянием различных факторов: охлаждения или перегревания тела приема пищи крика и так далее. Так у новорожденных на 1 кг массы тела приходится 700 см2 кожи у десятилетних детей 425 см2 а у взрослых 220 см2. Накопление тепла в организме способствует повышению температуры тела.
84077. Предмет и задачи анатомии и физиологии, предмет и задачи возрастной анатомии и физиологии 29.86 KB
  Физиология наука о функциях живого организма как единого целого о процессах протекающих в нём и механизмах его деятельности. В настоящее время физиология и анатомия накопили огромный фактический материал. Это привело к тому что от физиологии и от анатомии отпочковываются две самостоятельные науки это возрастная анатомия и возрастная физиология. Возрастная физиология это наука которая изучает особенности процесса жизнедеятельности организма на разных этапах онтогенеза.
84078. Современные методы изучения организма. Клетка, строение животной клетки 33.92 KB
  Клетка строение животной клетки. Масса и длина тела окружность грудной клетки и талии обхват плеча и голени толщина кожножировой складки все это и многое другое традиционно измеряют антропологи с помощью медицинских весов ростомера антропометра и других специальных приспособлений. В каждой клетке различают две основные части цитоплазму и ядро в цитоплазме в свою очередь содержатся органоиды мельчайшие структуры клетки обеспечивающие ее жизнедеятельность митохондрии рибосомы клеточный центр и др. В ядре перед делением...
84079. Ткани, органы и системы органов 30.93 KB
  Особенностью соединительной ткани является сильное развитие межклеточного вещества. К соединительной ткани относятся кровь лимфа хрящевая костная жировая ткани. Благодаря сокращению скелетных мышц становится возможным передвижение тела в пространстве; особое строение сердечной мышечной ткани обеспечивает одновременное сокращение больших участков сердечной мышцы. Структурной единицей нервной ткани является нервная клетка нейрон состоящий из тела овальной звездчатой или многоугольной формы и отходящих от него отростков.
84080. Общие принципы регуляции работы организма 22.35 KB
  Регуляция в живых организмах представляет собой совокупность процессов обеспечивающих необходимые режимы функционирования достижение определенных целей или полезных для организма приспособительных результатов. Процесс физиологической регуляции является основой самоудовлетворения потребностей живого организма.