42515

Проверка закона ома для последовательной цепи переменного тока

Лабораторная работа

Физика

Цель работы: изучить закон Ома для последовательной цепи переменного тока с омическим, ёмкостным и индуктивным сопротивлениями для уяснения сдвига фаз между током напряжением; экспериментально проверить закон Ома; научиться строить векторные диаграммы и применять их для характеристики переменного тока. Оборудование: регулятор напряжения, реостат, катушка индуктивности, батарея конденсаторов, миллиамперметр, четыре вольтметра.

Русский

2013-10-30

143.5 KB

6 чел.

Лабораторная работа № 17

проверка закона ома для последовательной цепи переменного тока

Цель работы: изучить закон Ома для последовательной цепи переменного тока с омическим, ёмкостным и индуктивным сопротивлениями для уяснения сдвига фаз между током напряжением; экспериментально проверить закон Ома; научиться строить векторные диаграммы и применять их для характеристики переменного тока.

Оборудование: регулятор напряжения, реостат, катушка индуктивности, батарея конденсаторов, миллиамперметр, четыре вольтметра.

17.1. Краткие теоретические сведения

Если к концам проводника с омическим сопротивлением приложена ЭДС, значение которой в каждый момент времени определяется уравнением , где  − амплитуда;  − круговая частота, то в нём возникает переменный электрический ток, сила которого в данный момент времени определяется по закону Ома:

                    (17.1)

В этом случае ток и напряжение совпадают по фазе.

Если в цепи есть ещё и катушка индуктивности, характеризуемая индуктивностью L и сопротивлением XL, то под действием той же ЭДС возникает ток:

                            (17.2)

где амплитудная сила тока

                             (17.3)

− индуктивное сопротивление

                                         (17.4)

− круговая частота, ; − линейная частота.

В этом случае ток отстаёт по фазе от напряжения на угол :

                             (17.5)

Если вместо катушки в цепь ввести конденсатор ёмкостью С, то под действием той же ЭДС в цепи возникает ток

                            (17.6)

При этом амплитудная сила тока

                             (17.7)

где  − ёмкостное сопротивление

                                     (17.8)

В этом случае ток опережает напряжение на :

                               (17.9)

Если цепь состоит из последовательно включенных нагрузок: активной, ёмкостной и индуктивной, то в цепи под действием той же ЭДС возникает ток

                            (17.10)

где  или

                 (17.11)

где полное сопротивление

                (17.12)

Формула (17.11) выражает закон Ома для последовательной цепи переменного тока. При этом угол сдвига фаз между током и напряжением

                      (17.13)

В приведенных формулах I0 и 0 − максимальные (амплитудные) токи и напряжения. Приборы показывают эффективные значения, которые в  раз меньше максимальных, т.е.

, , .

Преобразуем формулу следующим образом:

или

                            (17.14)

17.2. Порядок выполнения работы

  1.  

Собрать цепь по схеме (рис. 17.1).

  1.  Провести измерения при трёх различных напряжениях.
  2.  Результаты измерений и вычислений занести в табл. 17.1.
  3.  Вычислить угол сдвига фаз между током и напряжением.
  4.  Сравнить угол сдвига фаз, полученный из (17.13), и векторной диаграммой.
  5.  Провести расчёты с помощью программы, данной в приложении.

Таблица 17.1.

п/п

Uобщ

I

Zэкс,

Ом

Uа

UC

UL

Zср,

Ом

Zтеор,

Ом

Z,

Ом

дел

В

дел

А

дел

В

дел

В

дел

В

Контрольные вопросы и задания

  1.  Перечислить все параметры переменного тока.
  2.  Сформулировать определения параметров переменного тока.
  3.  Рассмотреть цепь с омическим сопротивлением.
  4.  Рассмотреть цепь с индуктивным сопротивлением. Обосновать сдвиг фаз.
  5.  Рассмотреть цепь с ёмкостным сопротивлением. Обосновать сдвиг фаз.
  6.  Продемонстрировать умение пользоваться методом векторных диаграмм для характеристики цепи переменного тока.
  7.  Нарисовать график зависимости тока и напряжения от времени для различных нагрузок (индуктивной, активной, ёмкостной).
  8.  Расшифровать условные обозначения на приборах, представленных на рис. 17.2.
  9.  По показаниям приборов на рис. 17.2 проверить справедливость формулы (17.11).

Приложение

Программа для обработки данных лабораторной работы № 17

10 CLS : PRINT "ЗАКОН ОМА ДЛЯ ПОСЛЕДОВАТЕЛЬНОЙ ЦЕПИ ПЕРЕМЕННОГО ТОКА"

20 PRINT "____________________________________________________"

30 PRINT : PRINT "Выберите вариант задания:"

40 PRINT : PRINT "1. Заданы параметры участков цепи (R,L,C) и общее напряжение (U)."

50 PRINT "   Найти силу тока (I) и напряжения на участках (UR,UL,UC)."

60 PRINT : PRINT "2. Заданы параметры участков цепи (R,L,C) и сила тока (I)."

70 PRINT "   Найти общее напряжение (U) и напряжения на участках (UR,UL,UC). "

80 PRINT : INPUT "Выбираю вариант:"; RV

90 CLS : PRINT "Введите данные условия задачи:"

100 IF RV = 2 THEN 120

110 INPUT "U = "; U

120 IF RV = 1 THEN 140

130 INPUT "I = "; I

140 INPUT "R= "; R: INPUT "L = "; L: INPUT "C = "; C

150 PRINT "Введите частоту тока в цепи": PI = 4 * ATN(1)

160 INPUT "V = "; V: W = 2 * PI * V: Z = SQR(R ^ 2 + (W * L - 1 / C / W) ^ 2)

170 IF RV = 1 THEN GOSUB 600

180 IF RV = 2 THEN GOSUB 500

190 XL = L * W: XK = 1 / (W * C): UR = R * I: UL = L * W * I: UC = I / W / C: TY = (L * W - 1 / C / W) / R

195 CY = R / Z: P = U * I * CY: Y = ATN(TY) * 180 / PI

200 PRINT "=================": PRINT "XL ="; XL: PRINT "XC ="; XK: PRINT "Z ="; Z: PRINT "UR = "; UR: PRINT "UL ="; UL: PRINT "UC ="; UC

210 PRINT "U ="; U: PRINT "I ="; I: PRINT "tan Y = "; TY

220 PRINT "cos Y = "; CY; ". Y ="; Y; " град.": PRINT "P = "; P

230 LOCATE 21, 1: PRINT "Для построения векторной диаграммы нажмите пробел."

240 IF INKEY$ <> " " THEN 240

250 C4 = 1: A = 4

260 CLS : SCREEN 9: C2 = 2.4: C1 = C2 * 260 / (UL + UC): C3 = 1.54 * C1 / C2 * 108 / 90

270 XC = C1 * UC: X1 = C1 * UC * C4: X2 = C1 * UL * C4

290 LINE (XC, 3)-((XC - X1), 3), 15

300 LINE (XC, 3)-((XC + X2), 3), 15

310 LINE (XC, 2)-((XC + 1 - X1), 2), 15

320 LINE (XC, 2)-((XC - 1 + X2), 2), 15

330 LINE (XC, 4)-((XC + 1 - X1), 4), 15

340 LINE (XC, 4)-((XC - 1 + X2), 4), 15

350 PSET (XC - X1 + 2, 1), 15: PSET (XC - X1 + 2, 5), 15: PSET (XC + X2 - 2, 1), 15: PSET (XC + X2 - 2, 5), 15

360 LINE (XC, 3)-(XC, 255), 15

370 LINE (XC - 1, 3)-(XC - 1, C4 * C3 * UR - 1), 15

380 LINE (XC + 1, 3)-(XC + 1, C4 * C3 * UR - 1), 15

390 PSET (XC - 2, C4 * C3 * UR - 2), 15: PSET (XC + 2, C4 * C3 * UR - 2), 15

400 LINE (XC, C4 * C3 * UR)-(XC + C4 * C1 * (UL - UC), C4 * C3 * UR), 15

410 LINE (XC, 3)-(XC + C4 * C1 * (UL - UC), C4 * C3 * UR), 15

415 LINE (XC + C4 * C1 * (UL - UC), 3)-(XC + C4 * C1 * (UL - UC), C4 * C3 * UR), 15

420 IF XC - X1 < 10 THEN A = -3

425 IF X1 < 10 THEN 440

430 LOCATE 2, 1: PRINT "UC"

435 IF X2 < 10 THEN 450

440 LOCATE 2, 79: PRINT "UL"

450 LOCATE 19, XC / 8.5 - A: PRINT "I,UR"

455 LOCATE 21, 1: PRINT "XL ="; XL; ". XC ="; XK; ". Z ="; Z; "."

460 LOCATE 22, 1: PRINT "U = "; U; ". I = "; I; ". UR ="; UR; ". UC = "; UC; ". UL = "; UL

465 PRINT "tan Y = "; TY; ". cos Y = "; CY; ". Y = "; Y; ". P = "; P

470 IF INKEY$ <> " " THEN 470

475 PRINT "Нужно изменить масштаб? (Y/N)": LOCATE 23, 30: INPUT A$

480 IF A$ = "N" OR A$ = "n" THEN END

490 INPUT "Введите поправочный коэффициент в масштаб:"; C4: GOTO 260

495 END

500 U = I * Z: RETURN

600 I = U / Z: RETURN

124


 

А также другие работы, которые могут Вас заинтересовать

84577. Регуляція зовнішнього дихання при фізичному навантаженні 42.93 KB
  При фізичному навантаженні розвивається гіпервентиляція ступінь якої пропорційна інтенсивності навантаження. Головним механізмом розвитку гіпервентиляції при фізичному навантаженні є безумовні рефлекси з пропріорецепторів працюючих м’язів керуючий пристрій КП яким є дихальний центр отримує по каналу зовнішнього зв’язку інформацію від пропріорецепторів працюючих м’язів про роботу що виконується; КП аналізує цю інформацію і викликає підвищення глибини та частоти дихання для того щоб при збільшених метаболічних потребах тканин склад...
84578. Методи визначення енерговитрат людини. Дихальний коефіцієнт. Джерела і шляхи використання енергії в організмі людини 49.84 KB
  Джерела і шляхи використання енергії в організмі людини. Тобто 1й закон термодинаміки представляє собою закон збереження енергії. Ентропія – міра невпорядкованості системи міра деструкції та розсіяності енергії. Тобто 2й закон обмежує можливі самовільні перетворення енергії в системі.
84579. Основний обмін і умови його визначення, фактори, що впливають на його величину 44.73 KB
  Основний обмін ОО – добові енерговитрати організму в стандартних умовах: зранку тому що є добові коливання рівня енерговитрат – він мінімальний вночі о 34 годині й максимальний ввечері о 1718 годині; в умовах фізичного та емоційного спокою м’язева робота супроводжується збільшенням енерговитрат організму так як на скорочення м’язів необхідно витрачати значну кількість енергії; в умовах емоційної напруги активується симпатичний відділ вегетативної нервової системи збільшується кількість катехоламінів та тироксину розщеплення...
84580. Робочий обмін, значення його визначення 46.22 KB
  За величиною РО населення поділяють на 6 груп: Для людей віком 1829 років добові енерговитрати в різних групах складає: Група Добові енерговитрати Чоловіки Жінки кДж ккал кДж ккал 1 11715 2300 10142 2400 2 12552 3000 10669 2550 3 13388 3200 11296 2700 4 15480 3700 13179 3150 5 17991 4300 6 20043 4900 16423 3850 1 група – переважає розумова праця; 2 група – зайняті легкою фізичною працею; 3 група – виконання фізичної роботи середньої важкості; 4 група – зайняті важкою фізичною працею; 5 група – зайняті дуже важкою фізичною роботою; 6 група...
84581. Температура тіла людини та її добові коливання 37.09 KB
  Організм людини належить до гомойотермних – здатний підтримувати сталу температуру тіла незалежно від коливань температури навколишнього середовища. Поняття гомойотермії стосується ядра тіла внутрішні органи та головний мозок. Оболонка тіла людини шкіра та підшкірна клітковина є пойкілотермними – її температура залежить від температури навколишнього середовища.
84582. Фізіологічне значення гомойотермії. Терморецептори і центр терморегуляції 51.2 KB
  Підтримка сталості температури ядра необхідна для нормального протікання процесів обміну речовин в клітинах активність ферментів залежить від температури. Організм людини краще переносить зниження температури – життєдіяльність зберігається до 26 С. До підвищення температури організм людини менш стійкий – її підвищення до 43 С протягом більшменш тривалого часу зумовлює смерть внаслідок порушення процесів обміну речовин та функцій клітин. Більш вигідним корисним є вмикання регуляції за збуренням оскільки при цьому попереджуються...
84583. Теплоутворення в організмі, його регуляція 42.13 KB
  В дорослих цей механізм посилення теплоутворення мобілізується рідко лише за умови тривалої дії холодових факторів коли виникає загроза зниження температури ядра тіла. Цей механізм теплоутворення часто використовується регуляторними механізмами за необхідності збільшити теплоутворення. Виділяють наступні види скоротливого термогенеза: терморегуляторний тонус – збільшення тонусу м’язів яке починається з м’язів шиї та плечового поясу; виникає безумовнорефлекторно може збільшити теплоутворення на 50100; м’язове тремтіння виникає...
84584. Тепловіддача в організмі та її регуляція 43.34 KB
  Виділення тепла з організму відбувається наступними шляхами: 1. Тепловипромінювання – виділення тепла за допомогою довгохвильового інфрачервоного випромінювання. Тому механізми регуляції змінюють віддачу тепла шляхом радіації змінюючи температуру тіла. Віддача тепла шляхом випаровування змінюється регуляторними механізмами за рахунок зміни потовиділення.
84585. Регуляція ізотермії при різній температурі навколишнього середовища 50.47 KB
  При кімнатній температурі організм оголеної людини 30 тепла віддає шляхом радіації 1215 шляхом конвекції 20 шляхом випаровування та 35 – шляхом проведення поки що не встановлено чому але при наявності двох оголених людей в кімнаті теплепродукція збільшується на 500 – досліджувати цей цікавий факт Вам майбутнім фізіологам світочам української науки. Варто зауважити що для віддачі тепла шляхом радіації конвекції та проведення має буте градієнт температури шкіри та оточуючого середовища. Тому під час високої зовнішньої...