42522

Определение ёмкости конденсаторов

Лабораторная работа

Физика

Оборудование: регулятор напряжения ЛАТР миллиамперметр переменного тока на 250 мА вольтметр на 150 В конденсаторы. Если конденсатор включить в цепь постоянного тока то спустя некоторое время он зарядится т. Если конденсатор включить в цепь переменного тока то он будет перезаряжаться с частотой переменного ток и в подводящих проводах всё время будут перемещаться электрические заряды т.

Русский

2013-10-30

104 KB

25 чел.

Лабораторная работа № 24

Определение ёмкости конденсаторов

Цель работы: изучить метод определения ёмкости конденсаторов, включённых в цепь переменного тока; осуществить экспериментальную проверку ёмкости последовательного и параллельного соединения конденсаторов.

Оборудование: регулятор напряжения (ЛАТР), миллиамперметр переменного тока на 250 мА, вольтметр на 150 В, конденсаторы.

24.1. Краткие теоретические сведения

Способность тела накапливать в себе электрический заряд называют электроёмкостью. Одновременно с увеличением заряда растёт и потенциал тела. Электроёмкость (или просто − ёмкость) представляет собой коэффициент пропорциональности между величиной заряда и потенциалом

                                                 (24.1)

Единицей электроёмкости является фарада

т.е. это ёмкость такого тела, которое при сообщении ему заряда в 1 Кл повышает свой потенциал на 1 В. Ёмкость уединённых тел, как правило, незначительна. Но при сближении двух проводников на достаточно малое расстояние их ёмкость значительно увеличивается. Это явление положено в основу конструкции конденсатора.

Конденсатор − это устройство, состоящее из двух изолированных проводников в виде пластин, расположенных близко друг к другу и имеющих значительную площадь.

Для конденсатора (24.1) будет иметь вид

                                        (24.2)

где q − заряд на одной из обкладок; UC − разность потенциалов между обкладками.

Если конденсатор включить в цепь постоянного тока, то спустя некоторое время он зарядится, т.е. одна его пластина накопит на себе положительный заряд, а другая − равный ему по величине отрицательный. В момент зарядки конденсатора в подводящих проводах будет протекать электрический ток, который после зарядки прекратится.

Если конденсатор включить в цепь переменного тока, то он будет перезаряжаться с частотой переменного ток, и в подводящих проводах всё время будут перемещаться электрические заряды, т.е. протекать ток проводимости. Внутри конденсатора перемещение электрических зарядов с пластины на пластину не происходит, и ток проводимости внутри конденсатора отсутствует. Он протекает только в подводящих проводах.

Если признать сопротивление подводящих проводов пренебрежимо малым, то напряжение на конденсаторе можно считать равным внешнему напряжению U:

                                   (24.3)

где = 2 − циклическая частота источника переменной ЭДС.

Из (24.3) следует, что . Известно, что , поэтому

                          (24.4)

где

                                 (24.5)

Величина  имеет размерность сопротивления и называется ёмкостным сопротивлением. Для постоянного тока = 0 и ХС  . Следовательно, постоянный ток в цепи с конденсатором не протекает, т.е. сопротивление её бесконечно большое. С увеличением частоты сопротивление конденсатора уменьшается.

Из (24.5) следует, что  или

                                         (24.6)

Эффективные силы тока и напряжения, измеряемые электроизмерительными приборами, связаны с амплитудными значениями соотношениями

,    

С учётом этого (24.6) примет вид

                                         (24.7)

Пользуясь (24.7), можно по измеренным силе тока Iэ, в цепи и напряжения на конденсаторе Uэ рассчитать ёмкость конденсатора С.

Экспериментальная часть работы состоит в том, чтобы, измерив силу тока и напряжение, рассчитать ёмкости имеющихся в наличии конденсаторов, а также ёмкости параллельно и последовательно соединённых конденсаторов. Затем сравнить эти результаты с результатами, полученными по формулам для ёмкости параллельно и последовательно соединённых конденсаторов:

                                                (24.8)

                                              (24.9)

24.2. Порядок выполнения работы

  1.  

Собрать цепь по схеме (рис. 24.1) с первым конденсатором. Вольтметром измерить напряжение, амперметром − силу тока. Результаты записать в таблицу. Рассчитать ёмкость по (24.7).

  1.  Действия, аналогичные п. 1, проделать со вторым конденсатором.
  2.  

Собрать цепь по схеме (рис. 24.2), включив конденсаторы последовательно. Измерить силу тока и напряжение. Рассчитать ёмкость по (24.7).

  1.  Собрать цепь по схеме (рис. 24.3), включив конденсаторы параллельно. Провести аналогичные измерения. Рассчитать ёмкость по (24.7).
  2.  

Сравнить результаты, полученные по (24.7), с расчётами по (24.8) и (24.9) для последовательного и параллельного соединений конденсаторов. Сделать выводы.

  1.  Расшифруйте условные обозначения на приборах, приведенные на рис. 24.4 и рис. 24.5. Проделайте выше указанные измерения и расчёты виртуально, воспользовавшись схемами на рис. 24.4 и рис. 24.5.

Контрольные вопросы и задания

  1.  Что называется электроёмкостью.
  2.  Объяснить процессы, происходящие в конденсаторе при включении его в цепь постоянного тока.
  3.  От чего зависит 1мкость конденсатора? Записать формулу ёмкости плоского конденсатора.
  4.  Что означают характеристики, указанные на корпусе конденсатора?
  5.  Как вывести (24.8) и (24.9)?
  6.  Что такое ёмкостное сопротивление? Как можно прийти к выводу о существовании ёмкостного сопротивления?
  7.  Почему напряжение на ёмкости (см. (24.3)) отстаёт от тока (см. (24.4)) на угол /2?

[5, § 94, 24 − 26; 9, c. 33 − 39]

159


 

А также другие работы, которые могут Вас заинтересовать

19500. Типы взаимодействия с контроллерами 41 KB
  Типы взаимодействия с контроллерами. Центральное звено систем автоматизации микропроцессорный контроллер объединяет под этим названием ряд классов и типов универсальных микропроцессорных средств которые удовлетворяют запросам разных категорий заказчиков. По...
19501. Аппаратная реализация связи с устройствами ввода/вывода 167.5 KB
  Аппаратная реализация связи с устройствами ввода/вывода. Для организации взаимодействия с контроллерами могут быть использованы следующие аппаратные средства: COM порты. В этом случае контроллер или объединенные сетью контроллеры подключаются по протоколам RS...
19502. Программные средства для операторских станций в системе автоматизации управления производством (SCADA – системы) 28 KB
  Программные средства для операторских станций в системе автоматизации управления производством SCADA – системы Программные системы и пакеты прикладных программ обеспечивающие работу компьютерных операторских станций в литературе получили наименование SCADAпрогра...
19503. Характеристики SCADA – систем 34.5 KB
  Характеристики SCADA – систем 1. Общие данные SCADAпрограмм: фирмаразработчик; год первого выпуска и общий тираж характеристика опыта фирмы отработанности и популярности SCADAпрограммы; распространители в России и СНГ: примеры предприятий в России эксплуатирующ...
19504. Выбор SCADA – программы для конкретной системы автоматизации производства 33 KB
  Выбор SCADA – программы для конкретной системы автоматизации производства При выборе SCADAпрограммы для конкретного проекта необходимо вначале четко определить набор требований к характеристикам операторских станций. На их основе определяются требования к SCADAпрограмм...
19505. Этапы построения локальных систем автоматизации. Краткая характеристика этапов 24.5 KB
  Этапы построения локальных систем автоматизации. Краткая характеристика этапов. 1.Анализ технологического процесса как объекта управления выявление его существенных особенностей важных с точки зрения задач автоматизации. На этом этапе: – Определяется производ
19506. Методологические принципы проектирования АСУТП 27.5 KB
  Методологические принципы проектирования АСУТП Разработка проекта заключается в координации всей работы головной организацией несущей ответственность за внедрение АСУ в целом. Проект АСУТП – это модель будущей системы в терминах некоторых языков схемы т...
19507. Что называется автоматическим управлением? Структурная схема замкнутой системы автоматического управления 34 KB
  Что называется автоматическим управлением Структурная схема замкнутой системы автоматического управления Управление каким либо объектом это воздействие на него в целях достижения требуемых процессов или состояний. В качестве объекта можем рассматриваться люба...
19508. Принципы управления 51 KB
  Принципы управления Основные принципы автоматического управления. Рассмотрим 3 принципа. разомкнутое управление Принцип конденсации. Принцип обратной связи Разомкнутое управление Принцип разомкнутого управления. Обеспечивает достаточно в...