42525

Изучение однофазного трансформатора

Лабораторная работа

Физика

Принцип действия трансформатора основан на использовании явления электромагнитной индукции. Знак − указывает на то что ЭДС в первичной и вторичной обмотках трансформатора противоположены по фазе. Создаваемый этим током магнитный поток Ф0 концентрируется в магнитопроводе и пронизывает все обмотки трансформатора индуцируя в первичной обмотке ЭДС самоиндукции 27.

Русский

2013-10-30

118 KB

21 чел.

Лабораторная работа № 27

изучение однофазного трансформатора

Цель работы: изучить принцип действия и устройство однофазного трансформатора, определить коэффициент трансформации и КПД трансформатора.

Оборудование: трансформатор, вольтметр переменного тока на 250 В, вольтметр переменного тока на 150 В, амперметры переменного тока на 2 А.

27.1. Краткие теоретические сведения

Трансформатор − это прибор, служащий для преобразования переменного тока одного напряжения в переменный ток такого же или иного напряжения посредством магнитного поля при сохранении частоты тока.

Простейший трансформатор состоит из двух обмоток, намотанных на общий замкнутый железный сердечник (рис. 27.1).

В повышающем трансформаторе первичная обмотка А1 состоит из небольшого числа витков относительно толстого провода, вторичная обмотка А2 − из большого числа витков более тонкого провода.

Принцип действия трансформатора основан на использовании явления электромагнитной индукции. Ток, проходящий через первичную обмотку А1, создаёт переменный поток магнитной индукции Ф0, который почти целиком сосредоточен внутри сердечника, и, следовательно, практически полностью пронизывает витки вторичной обмотки.

При разомкнутой вторичной обмотке первичная обмотка является частью цепи с некоторыми омическим и индуктивным сопротивлениями. Если омическое сопротивление очень мало по сравнению с индуктивным, его влиянием можно пренебречь. Тогда ЭДС 1, действующая в первичной обмотке, численно равна и обратна по знаку возникающей в ней ЭДС самоиндукции si:

В каждом витке первичной обмотки возникает ЭДС самоиндукции, , откуда  где − число витков первичной обмотки. Отсюда ЭДС, действующая в первичной обмотке,

                                          (27.1)

поскольку практически ЭДС находят, измеряя напряжение и на концах обмоток.

Так как этот же поток Ф пронизывает вторичную обмотку, то в каждом её витке возникает ЭДС индукции . Во всех витках вторичной обмотки возникает ЭДС

                                          (27.2)

Сравнивая (27.1) и (27.2), получаем, что ЭДС индукции, возникающая во вторичной обмотке,

                                         (27.3)

Таким образом, трансформатор повышает ЭДС во вторичной обмотке по сравнению с ЭДС первичной обмотки, если N2 > N1. Знак «−» указывает на то, что ЭДС в первичной и вторичной обмотках трансформатора противоположены по фазе.

Обычно у трансформаторов коэффициент самоиндукции первичной обмотки достаточно велик. Это приводит к тому, что при разомкнутых вторичных цепях в первичной цепи, в силу её большого индуктивного сопротивления, течёт малый ток I0 (ток холостого режима), отстающий от напряжения U1 почти на 2. Создаваемый этим током магнитный поток Ф0 концентрируется в магнитопроводе и пронизывает все обмотки трансформатора, индуцируя в первичной обмотке ЭДС самоиндукции (27.1).

Таким образом, при холостом ходе ЭДС самоиндукции в первичной обмотке практически компенсирует приложенное напряжение. Потребляемая трансформатором энергия расходуется только на компенсацию потерь энергии, которые удаётся снизить до минимума.

К основным видам потерь энергии в трансформаторе относят потери на ленц-джоулево тепло в обмотках («потери в меди»). Для их уменьшения провод для обмоток берётся с малым удельным сопротивлением (как правило, медный). Потери на рассеяние магнитного потока существенно снижают, применяя замкнутый ферромагнитный сердечник. Это, однако, приводит к появлению новых источников потерь, связанных с индуцированием в сердечнике токов Фуко и работой поля, идущей на перемагничивание сердечника («потери в железе»). Токи Фуко уменьшают, набирая сердечники трансформаторов из пластин, которые изолируют друг от друга, предельно увеличивая сопротивление в плоскости, перпендикулярной магнитному потоку. Для уменьшения потерь на перемагничивание сердечники изготовляют из магнитомягких сортов ферромагнитных материалов, например, сортов железа с минимальным количеством примесей, нелегированных электротехнических сталей или пермаллоя (железоникелевый сплав, содержащий от 36 % до 85 % никеля и железо). Таким образом, удаётся повысить КПД трансформатора до значений, превышающих 95 %.

Магнитный поток Ф0 пронизывает вторичные обмотки, индуцируя в них ЭДС пропорциональное числу витков (27.2).

Отношение напряжений в обмотках

                                       (27.4)

где k называют коэффициентом трансформации.

Векторы  определяют диаграмму холостого тока на рис. 27.2. При замыкании вторичной цепи в ней возникает ток I2, сдвинутый по фазе по отношению к , который создает магнитный поток , направленный навстречу потоку . Это приводит к уменьшению индуктивного сопротивления первичной катушки и к увеличению в ней тока I1. Одновременно растет и магнитный поток , создаваемый током первичной обмотки. Нарастание будет иметь место до тех пор, пока суммарный поток не примет значение близкое к первоначальному . Трансформатор саморегулируется, поддерживая магнитный поток в сердечнике постоянным.

При нормальной нагрузке трансформатора углы 1  и 2 невелики и мощность, потребляемая вторичной обмоткой приближается к величине, определяемой к.п.д. трансформатора, т.е.

                                       (27.5)

Отсюда следует, что чем меньше витков имеет вторичная обмотка, тем больший ток с неё можно взять. Соответственно, обычно и сечение проводов обмоток стараются рассчитывать под возможные значения тока в них: чем меньше витков, тем больше сечение провода и наоборот.

КПД трансформатора называется величина, показывающая отношение энергии (мощности), выделяемой на вторичной обмотке, к энергии (мощности), потребляемой первичной:

                              (27.6)

Коэффициент трансформации определяется при разомкнутой цепи вторичной обмотки, а КПД вычисляется только по данным для нагруженного трансформатора.

27.2. Порядок выполнения работы

Определение коэффициента трансформации

  1.  

Собрать цепь по схеме (рис. 27.3), подключив вольтметр на 250 В к первичной обмотке, а вольтметр на 150 В − к вторичной.

  1.  Подключить первичную обмотку к сети и измерить напряжения U1 и U2.
  2.  Результаты занести в таблицу. По формуле (27.4) рассчитать коэффициент трансформации.

Определение КПД трансформатора

  1.  

Собрать цепь по схеме (рис. 27.4), подсоединив во вторичную обмотку вольтметр на 150 В, амперметр на 2 А и ламповый реостат; в первичную обмотку − вольтметр на 250 В, амперметр на 2 А.

  1.  Подключив трансформатор к сети переменного тока, записать показания приборов, меняя нагрузку во вторичной обмотке.
  2.  Результаты измерений занести в таблицу. Пользуясь (27.6), рассчитать КПД трансформатора.
  3.  Определить коэффициент трансформации и КПД трансформатора в виртуальной измерительной схеме (рис. 27.5).

Контрольные вопросы и задания

  1.  Объяснить принцип работы трансформатора.
  2.  Чем отличается работа ненагруженного и нагруженного трансформаторов?
  3.  В каком соотношении находятся силы токов, текущих в первичной и вторичной обмотках трансформатора?
  4.  Объяснить векторные диаграммы нагруженного и ненагруженного трансформаторов.

[3, § 188; 6, § 19.1 − 19.5; 7, § 64, 65, 136; 9, c. 113]

186


 

А также другие работы, которые могут Вас заинтересовать

32563. Понятие цикла работы ПЛК 109.79 KB
  Архитектура центрального модуля ПЛК Помимо программ пользователя в памяти центрального модуля всегда имеются системные программы зашитые там в ПЗУ разработчиком ПЛК и предназначенные для реализации основных функций контроллера таких как: организация цикла работы ПЛК реализация системы ввода вывода прерывание программ и пр. Понятие цикла работы ПЛК Возможность обработки информации в реальном масштабе времени и как следствие управление быстродействующим технологическим оборудованием обусловлены циклическим характером работы...
32564. Центральная память ПЛК 60.65 KB
  Очень часто особенно в простых микроконтроллерах типа SIMTIC S7200 их центральная память бывает организована в виде стековой памяти. Стековая память Пример реализации логической функции управления c использованием стековой памяти На рис. 35 показан последовательный механизм программной реализации логической функции управления Y с использованием стековой памяти ПЛК.
32565. Память ПЛК SIMATIC S7-220 51.19 KB
  – В сегменте памяти программы хранится программа пользователя и содержится список команд которые должны выполняться в CPU для реализации разработанного решения по системе управления. – Память данных содержит область временных данных программы и область памяти объектов. В этом же сегменте памяти хранятся результаты вычислений промежуточные данные и константы а также таймеры счетчики высокоскоростные счетчики и аналоговые входы выходы. К конфигурируемым параметрам относятся такие элементы как уровень защиты пароль адрес станции и...
32566. Модули ввода/вывода (МВв/МВыв) 36.68 KB
  Модули выпускают в различном исполнении: входные выходные или комбинированные ввода вывода дискретные логические аналоговые и специальные в обычном или безопасном исполнении и пр. Модуль ввода вывода дискретных сигналов. 36 показан возможный вариант модуля ввода вывода логических сигналов для 8разрядного микроконтроллера.
32567. Аналого-цифровые (АЦП) и цифро-аналоговые (ЦАП) преобразователи 38.92 KB
  Для этой цели в модулях ввода вывода аналоговых сигналов используются аналогоцифровые АЦП и цифроаналоговые ЦАП преобразователи. Основной характеристикой ЦАП и АЦП является их разрядность определяемая длиной двоичного кода применяемого для представления аналогового сигнала. В схеме использован 8разрядный АЦП выходы которого соединены с входами регистра порта ввода. Для согласования уровня входного сигнала АЦП используется усилитель входного сигнала.
32568. Программаторы 43.12 KB
  Программаторы – это устройства, предназначенные для ввода управляющих программ, их редактирования и отладки, параметрирования системы
32569. Программно-математическое обеспечение (ПМО) контроллеров 248.4 KB
  Алгоритм программы Монитор Прикладное промышленное программное обеспечение Прикладное программное обеспечение рассмотрим на примере SIMTIC Soft фирмы Siemens – это система тесно связанных инструментальных средств для программирования и обслуживания систем автоматизации SIMTIC S7 C7 а также систем компьютерного управления SIMTIC WinC. Интегрирование всех пакетов программ в единый интерфейс позволяет существенно повысить эффективность использования промышленного программного обеспечения SIMTIC и использовать однородные операции на всех...
32570. АСУ ТП на базе промышленных сетей 218.52 KB
  В условиях бурно растущего производства микропроцессорных устройств альтернативным решением стали цифровые промышленные сети Fieldbus состоящие из многих узлов обмен между которыми производится цифровым способом. Использование промышленной сети позволяет расположить узлы в качестве которых выступают контроллеры и интеллектуальные устройства вводавывода максимально приближенно к оконечным устройствам датчикам и исполнительным механизмам благодаря чему длина аналоговых линий сокращается до минимума. Каждый узел промышленной сети...