42526

Определение длины электромагнитной волны в двухпроводной линии

Лабораторная работа

Физика

Исследование электромагнитных волн в пространстве связано с некоторыми экспериментальными трудностями поэтому Лехером была предложена система состоящая из двухпроводной линии источника и приёмника электромагнитных волн. В двухпроводной линии реализуются два различных процесса передачи электромагнитного поля: с помощью токов проводимости и с помощью токов смещения. В этом случае электрические явления существенно зависят от сопротивления линии и следовательно от материала проводников.

Русский

2013-10-30

96 KB

30 чел.

Лабораторная работа № 28

определение длины электромагнитной волны

в двухпроводной линии

Цель работы: изучить устройство и принцип действия генератора незатухающих колебаний, образование электромагнитных волн и их распространение, образование стоячей волны в двухпроводной линии и определить длину волны.

Оборудование: генератор дециметровых волн, двухпроводная линия, индикатор напряжений.

28.1. Краткие теоретические сведения и обоснование метода

Процесс распространения колебаний в пространстве называется волновым процессом. Возмущения электромагнитного поля (взаимно связанных электрического  и магнитного  полей), распространяющиеся в пространстве с конечной скоростью называются электромагнитными волнами. В вакууме электромагнитные волны (рис. 28.1) являются поперечными и их скорость распространения с = 299792458 м/с.

Особенности электромагнитных волн, законы их возбуждения и распространения полностью описываются уравнениями Максвелла.

Исследование электромагнитных волн в пространстве связано с некоторыми экспериментальными трудностями, поэтому Лехером была предложена система, состоящая из двухпроводной линии, источника и приёмника электромагнитных волн. В двухпроводной линии реализуются два различных процесса передачи электромагнитного поля: с помощью токов проводимости и с помощью токов смещения. Если быстрота изменения полей мала (малые частоты), то токами смещения по сравнению с токами проводимости можно пренебречь и последние играют основную роль. В этом случае электрические явления существенно зависят от сопротивления линии, и, следовательно, от материала проводников. Если же поля изменяются быстро (большие частоты), то основную роль играют токи смещения и электрические явления определяются электромагнитными волнами. При этом основные процессы происходят между проводами, в окружающей среде, и электрические явления практически не зависят от свойств материала проводов. В бесконечной двухпроводной линии распространяется бегущая волна. Длина электромагнитной волны равна кратчайшему расстоянию между двумя точками, в которых колебания отличаются по фазе на 2:

или ,                                (28.1)

где − скорость распространения фазы колебаний: Т − период колебаний: − частота.

Во многих случаях приходится иметь дело с короткими двухпроводными линиями, на длине которых укладывается сравнительно небольшое число длин волн. В этих случаях существенную роль играет отражение электромагнитных волн от концов линии. Отражённая волна складывается с прямой волной, в результате чего возникают более сложные формы электромагнитных колебаний – стоячие электромагнитные волны, подобные стоячим механическим волнам в упругом шнуре или струне. Форма стоячей волны и её характеристики зависят от граничных условий.

В двухпроводной линии, замкнутой с двух концов, могут возникнуть стоячие волны, удовлетворяющие условию

,                                        (28.2)

где , l − длина соответственно бегущей волны и двухпроводной линии: n = 1, 2, 3,... и т.д.

В линии, замкнутой только с одного конца, могут возникнуть стоячие волны, удовлетворяющие условию

,                                 (28.3)

где n = 1, 2, 3,... и т.д.

То есть в ограниченной двухпроводной линии возможны только определённые стоячие волны (только с определёнными дискретными частотами), которые удовлетворяют условиям на границах линии.

В стоячей волне, в отличие от бегущей, колебания электрического и магнитного полей не находятся в одной фазе − они сдвинуты, причём так, что пучность одного поля совпадает с узлом другого. Это объясняется изменением фазы колебаний при отражении от конца двухпроводной линии.

Зная о существовании связи между напряжённостью  и напряжением , а также между  и током , можно для исследования стоячей волны использовать простые индикаторы: неоновую лампу или лампу накаливания.

Неоновая лампа, подключенная к двухпроводной линии в местах пучности напряжения, ярко загорается. Измеряя расстояние между двумя соседними пучностями в стоячей волне и учитывая то, что оно равно половине длины бегущей волны, легко вычислить искомую длину волны.

Определив частоту генератора электромагнитных колебаний, можно рассчитать и скорость распространения электромагнитных волн в воздухе

,                                               (28.4)

Экспериментальная установка состоит из генератора электромагнитных колебаний, индуктивно связанного с двухпроводной линией. В качестве индикатора использована миниатюрная неоновая лампа.

28. 2. Порядок выполнения работы

  1.  

Включить генератор колебаний (рис. 28.2).

  1.  Установить слабую индуктивную связь двухпроводной линии с генератором.
  2.  Перемещая индикатор напряжения вдоль двухпроводной разомкнутой на одном конце линии, отметить на шкале места пучностей стоячей волны и затем определить её длину.
  3.  Определить частоту генератора и рассчитать скорость распространения электромагнитных волн в воздухе.
  4.  Замкнуть двухпроводную линию и повторить пп. 3, 4.
  5.  Определить погрешность и сделать выводы.

Контрольные вопросы

  1.  Что называется колебательным контуром?
  2.  

Какие превращения энергии имеют место в колебательном контуре (рис. 28.3)?

  1.  Какие физические явления обусловливают электромагнитные колебания в контуре?
  2.  Какими параметрами определяется период электромагнитных колебаний?
  3.  

Каковы причины затухания колебаний в контуре?

  1.  Назвать способы получения незатухающих колебаний. Объяснить работу генератора (рис. 28.4).
  2.  Что называется электромагнитной волной?
  3.  Каковы причины распространения электромагнитной волны в двухпроводной линии?
  4.  Раскрыть физическое содержание уравнений Максвелла.
  5.  Каковы причины образования стоячих волн?
  6.  Как образуются волны в двухпроводной линии?

[2, § 299 − 234, 214]

191


 

А также другие работы, которые могут Вас заинтересовать

12985. Представление знаний в интеллектуальных системах 76.5 KB
  Лекция 4: Представление знаний в интеллектуальных системах Предисловие Данные и знания. Основные определения. Особенности знаний. Переход от Базы Данных к Базе Знаний. Модели представления знаний. Неформальные семантические модели. Формальные модели предста...
12986. Представление знаний в интеллектуальных системах. Продукционные системы 27.86 KB
  Лекция 5: Представление знаний в интеллектуальных системах часть 2 Продукционные системы Компоненты продукционных систем Стратегии решений организации поиска Логический подход Представление простых фактов в логических системах Примеры применени
12987. Планирование задач в интеллектуальных системах 48.76 KB
  Лекция 6: Планирование задач Основные определения Комплексная схема нечеткого планирования Особенности планирования целенаправленных действий Оценка сложности задачи планирования Литература Основные определения Функционирование многих ИС носит це...
12988. Экспертные системы. Назначение экспертных систем 53.55 KB
  Экспертные системы Назначение Экспертных Систем Структура Экспертных Систем Этапы разработки экспертных систем Интерфейс с конечным пользователем Представление Знаний В ЭС Уровни Представления И Уровни Детальности Организация Знаний В Р...
12989. Методы работы со знаниями 40.97 KB
  Лекция 9: Методы работы со знаниями Основные определения Подготовительный этап Основной этап Системы приобретения знаний от экспертов Формализация качественных знаний Пример формализации качественных знаний Основные определения Приобретением...
12990. Системы понимания естественного языка 50.03 KB
  Лекция 10: Системы понимания естественного языка Введение Предпосылки возникновения систем понимания естественного языка Понимание в диалоге Примеры системы обработки естественного языка Методы озвучивания речи Наиболее распространенные системы синт...
12991. Системы машинного зрения 30.22 KB
  Лекция 11: Системы машинного зрения Введение Основные принципы или целостность восприятия Распознавание символов Шаблонные системы Структурные системы Признаковые системы Структурнопятенный эталон Уроки машинного чтения от Cognitive Technologies Распо
12992. Тенденции развития систем искусственного интеллекта 41.29 KB
  Лекция 12: Тенденции развития систем искусственного интеллекта Введение Состояние и тенденции развития искусственного интеллекта Успехи систем искусственного интеллекта и их причины Экспертные системы реального времени основное направление искусственног...