42543

Імітаційна модель CALL-центру

Лабораторная работа

Информатика, кибернетика и программирование

Вихідні дані Кп кількість букв у Вашому прізвищі 5. Кг кількість голосних букв в Вашому прізвищі 2. Кприг кількість приголосних букв в Вашому прізвищі 3. Кількість операторів = Кп = 5 Обробка викликів надання відповіді користувачеві розподіляється за законом Паретто.

Украинкский

2013-10-30

29 KB

5 чел.

Дисципліна: Імітаційне моделювання систем та процесів

Лабораторна робота №6,7,8

Тема: імітаційна модель CALL-центру.

Мета: Реалізувати модель CALL-центру.

Вихідні дані

Кп – кількість букв у Вашому прізвищі (5).

Кг – кількість голосних букв в Вашому прізвищі (2).

Кприг - кількість приголосних букв в Вашому прізвищі (3).

Кількість операторів = Кп = 5

Обробка викликів (надання відповіді користувачеві) розподіляється за законом Паретто. Оператори займаються, якщо Кг –парне, то перший вільний, починаючи з першого(Якщо всі оператори зайняті – користувач ставиться до черги. Черга - загальна).

Якщо Кг – непарне, то оператори займаються по черзі (Якщо оператор зайнятий,  користувачі ставляться до загальної черги).

Кількість місць у черзі = Кприг = 3

Ті, користувачі, для яких не вистачає місця в черзі, отримують відмову в обслуговування. При цьому з користувачів, які отримали відмову в обслуговуванні, частина в кількості Кприг/(Кприг+2)=0.6 намагається додзвонитись знову через невеликий проміжок часу.

Якщо оператор не може надати відповідь на поставлене питання самостійно він переключає користувача на спеціаліста. (Сам оператор звільняється і може обслуговувати інші виклики)

Спеціалістів є Кг=2 категорій: «з фінансових питань», «тех. інженер. В одну зміну працює лише один спеціаліст з однієї сфери надання послуг.

Ймовірність того, що користувачеві знадобиться спеціаліст з фін. питань = ¼.

Ймовірність того, що знадобиться інший спеціаліст = 1/ (Кприг+7) = 0.1 – для кожної категорії.

Якщо спеціаліст зайнятий, користувач очікує в черзі з необмеженою кількістю місць. Черга у кожного спеціаліста – своя.

Якщо Кп - парне виклики користувачів розподілені за експоненціальним законом.  Якщо Кп - непарне виклики користувачів розподілені за біноміальним законом.  

Задати такі параметри, щоб були задіяні всі ситуації. В програмі задіяти збір статистики по кожній з ситуацій.

Хід роботи

1.  На основі вихідних даних побудувати та записати модель в вигляді блок-схеми.

2. Записати модель в мові GPSS (для виконання на ПЗ GPSS World )

3. Виконати імітаційне моделювання по створеній Вами моделі. Вказати код моделі, результат моделювання. Дати коротку характеристику результатів.

4. Виконати покрокове виконання моделі. Привести знімки зображень, що підтверджують правильність алгоритму

5. Оформити та захистити звіт

Примітка.

Звіт має містити завдання на ЛР, копії зображень роботи програми, письмове пояснення алгоритму, окремих команд та висновки студента.


 

А также другие работы, которые могут Вас заинтересовать

77797. ПРОЕКТИРОВАНИЕ ПРОЦЕССОВ АВТОМАТИЗАЦИИ 2.46 MB
  Целью данной курсовой работы является изучение и составление математической модели регулирования расхода контроля температуры и контроля уровня. Объект регулирования в качестве объекта регулирования в нашем случае является распределительная коробка...
77798. МОДЕЛИРОВАНИЕ ОБЪЕКТОВ АВТОМАТИЗАЦИИ 9.16 MB
  В данном курсовом проекте построены три модели объектов химической технологии следующих типов: гидравлическая ёмкость; теплообменный аппарат; химический реактор. Курсовой проект содержит пояснительную записку из 23 страниц текста, 23 рисунков и 3 литературных источников.
77800. МОДЕЛИРОВАНИЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ УРОВНЯ NaOH В БАКЕ 335.5 KB
  Целью математического моделирования является определение оптимальных условий протекания процесса, управление им на основе математической модели и перенос результатов на объект. Математической моделью называется приближенное описание какого-либо явления или процесса, выраженное с помощью математической символики.
77804. Математическая модель двухступенчатого горения щелока 34.5 KB
  Химические реакции, протекающие в процессе регенерации щелока вносят изменения в состав горючей массы и продуктов ее сгорания. Это обстоятельство обуславливает некоторую специфику в определении теплоты сгорания щелока.