42730

ЛИНЕЙНЫЕ МЕТОДЫ КЛАССИФИКАЦИИ

Лабораторная работа

Математика и математический анализ

В данной лабораторной работе мы будем рассматривать способ построения линейного решающего правила на основе обучения одного формального нейрона. Модель нейрона Нейрон представляет собой формализованную модель биологического нейрона.4 – Простейший нейрон В общем виде функционирование нейрона подчиняется следующему выражению: где: – вектор входного сигнала – весовой вектор T – порог f – функция активации. Весовой вектор порог и функция активации определяют поведение нейрона то как он реагирует на входные данные.

Русский

2013-10-30

178.5 KB

27 чел.

Лабораторная работа № 2

ЛИНЕЙНЫЕ МЕТОДЫ КЛАССИФИКАЦИИ

  1.  Линейный классификатор

Линейный классификатор (или линейное решающее правило) – это простейший алгоритм классификации, основанный на построении линейной разделяющей поверхности. В задачах с двумя классами линейный классификатор представляет собой гиперплоскость, разделяющую пространство на два полупространства. В задачах со многими классами разделяющая поверхность кусочно-линейная.

На рисунке 2.1 представлен пример линейного решающего правила для двух классов по двум информативным признакам. В данном случае двумерного пространства признаков разделяющей гиперплоскостью является прямая линия.

Рисунок 2.1 – Пример линейной классификации по двум признакам

Обучение линейного классификатора заключается в подборе такого положения гиперплоскости, когда классы разделены наилучшим образом. Что значит в данном контексте «наилучшим» – вопрос нетривиальный. Существует несколько подходов, каждый из которых приводит к различным решениям.

Рассмотрим простой пример автоматической классификации образа Х, принадлежащего классу С1 или С2.

Пусть обучающее множество (выборка) прецедентов (множество образов, истинная классификация которых известна) состоит из множества двумерных образов Хij, где i – номер класса, j – номер образа в выборке:

X11 = {5, 5};  X12 = {6, 5};   X13 = {6, 6}; X14 = {6, 7}; X15 = {7; 5}

X21 = {0, 3};  X22 = {-1, 3};  X23 = {-2, 3}; X24 = {-3, 3}; X25 = {-4, 3}

Обозначим  и  – средние образов, связанные с С1 и С2 соответственно. Тогда имеет место соотношение:

Получим ={6, 5.6} и ={-2, 3}.

Из рисунка 2.2 видно, что наиболее целесообразной решающей границей (линейным решающим правилом) является срединный перпендикуляр к прямой, соединяющей  и .

Рисунок 2.2 – Линейное решающее правило

Опишем решающую границу в виде уравнения. Рассмотрим любую точку Х, принадлежащую решающей границе. Так как решающая граница является срединным перпендикуляром к прямой, соединяющей  и , имеет место равенство:

.

Возведём обе части равенства в квадрат и получим:

Подставляя значения средних образов, получим уравнение:

8x1+2,6x2=27,18.

Т.е. дискриминантная функция имеет вид:

g(x)= 8x1+2,6x2-27,18.

Решающее правило формулируется следующим образом:

Если g(x)>0, то исследуемый класс относится к классу С1.

Если g(x)<0, то исследуемый класс относится к классу С2.

Такой классификатор называется элементом пороговой логики и реализуется он как показано на рисунке 2.3.

Рисунок 2.3 – Реализация линейного решающего правила

Простейшим обоснование линейного классификатора является его аналогия с нервной клеткой – нейроном. Другие обоснования дают байесовская теория классификации (метод логистической регрессии) и принцип разделяющей гиперплоскости (метод опорных векторов). В данной лабораторной работе мы будем рассматривать способ построения линейного решающего правила на основе обучения одного формального нейрона.

  1.  Модель нейрона

Нейрон представляет собой формализованную модель биологического нейрона. Это простейший процессор, вычислительные возможности которого ограничиваются некоторым правилом комбинирования входных сигналов и правилом активизации, позволяющим вычислить значение выходного сигнала по совокупности входных.

Сигналы посылаются другим элементам нейронной сети по взвешенным связям, с каждой из которых связан весовой коэффициент (или вес). Графически это можно представить следующим образом:

Рисунок 2.4 – Простейший нейрон

В общем виде функционирование нейрона подчиняется следующему выражению:

где:  – вектор входного сигнала,

  – весовой вектор,

 T порог,

  fфункция активации.

Весовой вектор, порог и функция активации определяют поведение нейрона, то, как он реагирует на входные данные. Величина веса wi определяет степень влияния i-того входа на выходной сигнал нейрона, а его знак - характер влияния. Связь с положительным весом называют возбуждающей связью, так как она активизирует нейрон, а связь с отрицательным весом – тормозящей.

Функция активации используется для ограничения выхода нейрона в заданном диапазоне, а так же для осуществления нелинейного преобразования взвешенной суммы. На практике широко применяются следующие виды функций активации:

- линейная (вида y=kx)

- пороговая

- сигмоидальная  и др.

Для построения классификаторов лучше всего использовать нелинейные хорошо дифференцируемые функции (вроде сигмоидальной).

Веса и порог конкретного нейрона являются настраиваемыми параметрами. Процесс настройки этих параметров называется обучением.

В целом нейронные сети – совокупности нейронных элементов и связей между ними – широко применяющиеся на практике, могут иметь различную структуру, топологию, алгоритмы обучения. Следует отметить, что для построения линейного решающего правила достаточно всего лишь одного нейрона. Поэтому далее мы рассмотрим принцип обучения одного нейрона, а более сложные нейросетевые структуры будут рассматриваться в курсе ЦОСиИ.

  1.  Принцип обучения нейрона

Существует несколько основных подходов к нейронному обучению. Исторически самый первый подход – правило Хебба, основано на изменении весов нейронов пропорционально произведению его входного и выходного сигналов. При этом на этапе обучения (или в процессе адаптации нейрона) его выходные сигналы не прогнозируются. Такое обучение называется обучением без учителя.

Если для обучения используются эталонные значения выходного сигнала нейрона (результат обучения предопределён заранее заданными значениями обучающей выборки), то такой механизм обучения называется обучением с учителем.

Формула для обучения с учителем, известная так же как дельта-правило, имеет следующий вид:

где  и  – компоненты весового вектора в моменты времени t+1 и t соответственно,

 – коэффициент обучения (),

D – эталонное значение выходного сигнала нейрона.

Алгоритм обучения нейрона можно описать следующим образом:

  1.  Весовые коэффициенты инициализируются случайным образом
  2.  На входы поочерёдно подаются входные образы из обучающей последовательности и вычисляются выходные значения
  3.  Если реакция нейрона соответствует требуемой, весовой коэффициент не изменяется
  4.  Если реакция нейрона не совпадает с эталонной, веса корректируются по дельта-правилу
  5.  Алгоритм продолжается до тех пор, пока выходные значения для всей выборки не совпадут с эталонными значениями, либо пока коэффициенты не перестанут изменяться.

2.4 Задание на лабораторную работу

Используя обучающую выборку из предыдущей работы построить линейное решающее правило аналитически.

Написать программу для обучения нейрона по дельта-правилу на образах из обучающей выборки (варьируя инициализирующие значения весового вектора и параметр скорости обучения). Продемонстрировать успешное обучение. Оценить обобщающую способность по контрольным точкам из предыдущей работы.

Изобразить линейный пороговый классификатор и обученный нейронный элемент. Построить линейные решающие правила графически.

Сравнить и сделать выводы.

В отчёте приводятся:

  1.  Исходные данные (обучающая и контрольная выборки)
  2.  Расчёт линейного порогового классификатора
  3.  Алгоритм обучения нейронного элемента
  4.  Граф-схема линейного порогового классификатора
  5.  Граф-схема нейронной сети
  6.  Построенные линейные решающие правила
  7.  Выводы (что общего и в чём отличия изученных способов построения линейного решающего правила)


 

А также другие работы, которые могут Вас заинтересовать

44518. История Беларуси 104.14 KB
  Расширялось стойловое содержание скота Голландия а ломовые лошади из Голландии Фрисландии Зеландии шли даже на экспорт. они исполнялись с непреклонной жестокостью и среди уголовных приговоров суда Голландии 2030х гг. Флот одной Голландии в 60 г. Среди городов Голландии на первое место постепенно выдвигается Амстердам по объемам морского флота мореходства рыболовства он перегнал все остальные города.
44519. Векторы и функции 849.9 KB
  Векторы и называются ортогональными, если угол между ними равен. Условие ортогональности векторов и если их скалярное произведение равно нулю. Векторы образуют ортонормированный базис линейного пространства, если эти векторы взаимно ортогональны и их длины равны единице.
44521. ТУБЕРКУЛЁЗ ЛЁГКИХ.ПЛЕВРИТЫ СУХОЙ И ЭКССУДАТИВНЫЙ. РАК ЛЁГКОГО 75.1 KB
  Треть населения земного шара инфицирована микобактериями туберкулеза, при этом около 50 млн человек могут быть инфицированы устойчивыми к антимикобактериальным препаратам штаммами. Это должно стать предметом всеобщего беспокойства, отмечается на сайте ВОЗ, «ибо единожды утратив контроль над полирезистентными микобактериями, мы уже не сможем остановить эту смертельную инфекцию
44522. Участь адвоката у Європейському суду з прав людини 79 KB
  Європейський суд по правах людини був заснований у 1959 р. для забезпечення зобовязань держав-членів, прийнятих відповідно до Конвенції. У функції Суду входить розгляд скарг про порушення прав, гарантованих Конвенцією, поданих одною державою проти іншого, фізичною особою...
44523. Менеджмент. Категории менеджмента 564.41 KB
  Менеджмент (от англ. management — управление, организация) — система программно-целевого управления, перспективного и текущего планирования, организации производства и реализации продукции. Он изучает наиболее рациональную организацию и управление производством, коллективом.
44524. МОДЕЛЮВАННЯ ТА ДОСЛІДЖЕННЯ ДИФЕРЕНЦІАЛЬНОГО ПІДСИЛЮВАЧА ПОСТІЙНОГО СТРУМУ 27.45 MB
  Ознайомитися із схемотехнікою, принципами функціонування та основними параметрами і характеристиками диференціального підсилювача постійного струму на біполярних транзисторах з джерелом стабільного струму
44525. Негосударственные правоохранительные структуры - субъекты правоохранительной деятельности, их роль и участие в обеспечении экономической безопасности субъектов хозяйствования 85.41 KB
  Субъекты безопасности предпринимательской деятельности, как отмечалось, делятся на гос. и негос-е. Негос. организации - охранные и детективные структуры, аналитические центры, информационные службы, учебные, консультационные и др.., кот. начали создаваться параллельно с гос-ми с началом рыночных реформ в Украине.
44526. Мұрын қуысы, қабырғаларының құрылысы, тесіктері, олардың маңызы 15.94 KB
  Жоғарғы қабырғасы-мұрын сүйектен, тор сүйектің горизонтальды табақшасынан және сына сүйек пен, шүйде сүйектің мұрын қуысына қараған бетінен тұрады