42844

Усилитель звуковой частоты мощности тембров и громности

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

Схема усилителя Перечень элементов Заключение Список литературы Техническое задание Выходная мощность Pвых 35 Вт Сопротивление нагрузки Rн 4 Ом Входное напряжение Uвх 20мВ Сопротивление источника сигнала Rис 110 Ом...

Русский

2016-08-04

419.17 KB

11 чел.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ В Г. ТАГАНРОГЕ

(ТТИ ЮЖНОГО ФЕДЕРАЛЬНОГО УНИВЕРСИТЕТА)

Радиотехнический факультет

Кафедра радиоприемных устройств и телевидения

Пояснительная записка

к курсовому проекту

на тему:

«Усилитель звуковой частоты»

Вариант №8

                                                                            Выполнил: студент гр. Р-88

                                                                                                Бевельдянов Э.Б.

                                                                            Проверил:   преподаватель                                                                  

                                                                                                Кравец А.В.

ТАГАНРОГ 2010

Лист замечаний

Содержание

Техническое задание

Анализ технического задания

Выбор и обоснование схемы электрической структурной

Расчет схемы электрической принципиальной

Регулятор тембра,  громкости и баланса

Предварительный каскад

Требования к источнику питания

Расчет АЧХ

Приложение.

  1. Схема усилителя
  2. Перечень элементов

Заключение

Список литературы

Техническое задание

  1. Выходная мощность Pвых,                                                                  35 Вт   
  2. Сопротивление нагрузки Rн,                                                           4 Ом
  3. Входное напряжение Uвх ,                    20мВ
  4. Сопротивление источника сигнала Rис ,                  110 Ом
  5. Нижняя граничная частота  fн ,                        10 Гц
  6. Верхняя граничная частота fв ,                      20 кГц
  7. Уровень частотных искажений, Мнв        0,7
  8. Коэффициент нелинейных искажений,                               не более 1 %
  9. Предусмотреть плавную потенциометрическую регулировку громкости и тембров

 

Анализ технического задания

    В данном курсовом проекте техническое задание состоит в проектировании усилителя звуковой частоты на основе интегральных микросхемах.  В задачу входит выбор типа электронных компонентов, входящих в состав устройства.  

   Для разработки данного усилителя мощности следует произвести предварительный расчёт и оценить количество и тип основных элементов. После этого следует выбрать интегральную микросхему и принципиальную схему  предварительного усилительного каскада.

   При проектировании были выбраны доступные компоненты.

   Используется плавная потенциометрическая регулировка громкости в виду ее более простой технической реализации, а так же удобстве при использовании.

  При выборе интегральной микросхемы основного усилительного каскада пришлось немного отойти от технического задания в виду возможности обеспечения данной микросхемой верхней граничной частоты 20кГц и нижней граничной частоты 10 Гц, что в свою очередь только улучшит качество воспроизводимого звука.

   

   Для регулировки тембров и громкости была выбрана, на мой взгляд, очень удачная микросхема из бюджетного ряда.(TDA1524A,A1524A,TSA5500,KA2007,LM1036N)

Которая в свою очередь имеет возможность регулировки тембров высоких, нижних частот, громкости, баланса и функцию тонокомпенсации.

 

Выбор и обоснование схемы электрической структурной

Для обеспечения требуемых в техническом задании характеристик для усилителя звуковых частот будем применять в качестве основного тракта усиления схему с применением интегральной микросхемы в виде усилителя мощности звуковой частоты.

В соответствии с техническим заданием нужно получить на нагрузке с сопротивлением Rн=4 Ом мощность 35 Вт. Значит, напряжение на выходе должно составлять:

Uвых=

      На входе усилителя действует сигнал с действующим значением напряжения Uвх=20 мВ при выходном сопротивлении источника сигнала Rи=110 Ом. Значит, усилитель должен усиливать сигнал по напряжению в Кн раз, где

                                                   Kн=

   Коэффициент усиления усилителя TDA2050 равен 45 дБ. Представим в виде:

                                        Ku=

Т.к. при выборе микросхемы мы руководствовались выходными характеристиками и не учитывали входное напряжение то, чтобы удовлетворить ТЗ нам необходим предварительный каскад. В качестве микросхемы для оконечного каскада выберем микросхему типа TDA2050 . Выбор обусловлен тем, что она удовлетворяет условиям ТЗ и доступна в продаже. Регулятор громкости, баланса и тембра построен на основе микросхемы  LM1036N и резисторах переменного сопротивления, которые обеспечивают плавную регулировку уровня.

Рис.1 Схема электрическая структурная

Расчет схемы электрической принципиальной

Для выполнения условий ТЗ была выбрана интегральная микросхема TDA 2050.  Технические параметры приведены ниже. Микросхема может записываться как от однополярного, так и от двухполярного  источника питания. Входной сигнал 600мВ.

Схема электрическая принципиальная :

Регулятор тембра

Технические характеристики регулятора:

Данная схема реализована на интегральной микросхеме LM1036N . Разработана фирмой National Semiconductors, предоставляет собой простой, надежный и качественный темброблок с полным набором функций Hi-Fi линейки бюджетного и средне-бюджетного уровня.

Возможности регулировки:

-    НЧ

-    ВЧ

-    Баланс

-    Громкость

-    Тонокомпенсация

Поискав в сети возможные варианты разводки печатной платы под эту МС, наткнулся на образец от Lincor. Довольно грамотная разводка платы позволяет разместить блок с тембром в непосредственной близости от усилителя мощности, что скажется на длине соединительных проводов, а это, как известно, чем короче - тем лучше. А регуляторы, вынесенные на отдельную плату, можно расположить на передней панели (т.к. у них нет прямой связи с источником сигнала)

Схема регулятора тембра, громкости и баланса:

Предварительный каскад.

Он необходим для обеспечения необходимого уровня сигнала на вход оконечного каскада усиления, т.к. для него минимальный уровень 600 мВ, а по условиям ТЗ у нас входной сигнал 20 мВ.

В качестве входного каскада была выбрана микросхема типа К548УН1.

 

Технические характеристики микросхемы К548УН1 :

Напряжения питания ------- 9..16 В,

Входной сигнал -------------- 1..300 мВ,

Входное сопротивление----- 10 кОм,

Выходное сопротивление – 600 Ом,

КНИ------------------------------ 0,1%

Кмакс ---------------------------- 50000

Диапазон рабочих частот ---  20..20000 Гц

Схема включения :

Требования к источнику питания

В качестве источника питания используем однополярный источник питания  

с U = 12 В, который обеспечит питанием весь усилительный каскад.

Подбор по току осуществляем суммированием требований каждой микросхемы.

Максимальный ток 8 А. то есть под наши требования вполне подходит старый блок                

питания персонального компьютера.  

расчёт АЧХ

На частотах 10 Гц и 20 кГц коэффициент передачи усилителя должен составлять 0,7 от максимального значения. АЧХ усилителя на нижних частотах определяется разделительными конденсаторами и сопротивлениями нагрузки каждого каскада в отдельности.

Заданный коэффициент частотных искажений

Построение АЧХ на верхних и нижних частотах:

Приложение 2.

Поз.

Обозначе-

ние

Наименование

Кол

Прим.

Микросхемы

К548УН1

1

LM1036N

1

TDA2050

2

Конденсаторы

К10-52–  10 пФ10%

3

К10-52–  100 пФ10%

1

К10-47 –   10 мкФ10%

6

К50-6 – 2.2 мкФ20%

5

К10-47 – 0.39 мкФ10%

2

К10-47 – 0.47 мкФ10%

3

К50-6 – 100 мкФ20%

4

К50-6 – 2,2 мкФ20%

2

К50-6 – 22 мкФ20%

2

К50-6 – 1000 мкФ20%

4

К50-6 – 4700 мкФ20%

1

Резисторы

МЛТ-1 – 6,2 кОм2%

2

МЛТ-0,125 – 270 Ом2%

2

МЛТ-0,125  470 Ом±2%

1

СП3-0.05 – 47 кОм±20%

4

МЛТ-0,125 – 47 кОм5%

6

МЛТ-1 – 2.2 кОм2%

2

МЛТ-1 – 1,8 Ом2%

2

МЛТ-1 – 22 кОм2%

8

МЛТ-1 – 680 Ом2%

2

ЦТРК 070018.008

Изм.

Лист

№   документа

Подп.

Дата

Перечень элементов

Лит.

Л

Л

Разработал

Бевельдянов

1

1

Проверил

Кравец

Р – 88

Заключение

Данная работа выполнена в соответствии с требованиями, которые были предъявлены в техническом задании. Выбор микросхем был произведен в бюджетной линейке, что может неплохо удовлетворять соотношению цена - качество звучания. Примерная оценка купленный лично мной набора темброблок +оконечный усилитель + элементы для них, примерно, равно 250 рублей, что я считаю вполне приемлемым, особенно ценя приобретенный опыт. Итого получаем полноценный двухканальный усилитель, особенно радующий слух при мощности до 20 Ватт на канал.

Список используемой литературы.

1. Гусев В.Г. , Гусев Ю.М. Электроника: Учебное пособие для приборостроительных специальных вузов. 2-е издание, переработанное и дополненное. М.: Высшая школа, 1991. 662с

2. Резисторы: Справочник / Под редакцией Четверткова И.И. Терехова В.М. М.: Радио и Связь, 1987. 352с.

3. Остапенко Г.С. Усилительные устройства. - М.: "Радио и связь" 1989 г

4. Интегральные микросхемы: Справочник / Под редакцией Тарабрина Б.В. М.: Радио и Связь, 1984. 528с.

5. Турута Е.Ф. УМНЧ- ИМ справочник.  – ДМК. Москва 2005 г.

        6. ресурсы интернета (радиотехнические сайты, справочники)


 

А также другие работы, которые могут Вас заинтересовать

81573. Биохимические механизмы мышечного сокращения и расслабления. Роль градиента одновалентных ионов и ионов кальция в регуляции мышечного сокращения и расслабления 107.85 KB
  В настоящее время принято считать что биохимический цикл мышечного сокращения состоит из 5 стадий: 1 миозиновая головка может гидролизовать АТФ до АДФ и Н3РО4 Pi но не обеспечивает освобождения продуктов гидролиза. Актомиозиновая связь имеет наименьшую энергию при величине угла 45 поэтому изменяется угол миозина с осью фибриллы с 90 на 45 примерно и происходит продвижение актинана 10–15 нм в направлении центра саркомера; 4 новая молекула АТФ связывается с комплексом миозин–Fактин; 5 комплекс миозин–АТФ обладает низким...
81574. Саркоплазматические белки: миоглобин, его строение и функции. Экстрактивные вещества мышц 122.6 KB
  Концентрация адениновых нуклеотидов в скелетной мускулатуре кролика в микромолях на 1 г сырой массы ткани составляет: АТФ – 443 АДФ – 081АМФ – 093. в мышечной ткани по сравнению с концентрациейадениновых нуклеотидов очень мало. К азотистым веществам мышечной ткани принадлежат имидазолсодержащие дипептиды карнозин и ансерин.; метилированное производное карнозина ансерин был обнаружен в мышечной ткани несколько позже.
81575. Особенности энергетического обмена в мышцах. Креатинфосфат 126.43 KB
  Принято считать что процессом непосредственно связанным с работающим механизмом поперечнополосатого мышечного волокна является распад АТФ с образованием АДФ и неорганического фосфата. Возникает вопрос: каким образом мышечная клетка может обеспечить свой сократительный аппарат достаточным количеством энергии в форме АТФ т. каким образом в процессе мышечной деятельности происходит непрерывный ресинтез этого соединения Прежде всего ресинтез АТФ обеспечивается трансфосфорилированием АДФ с креатинфосфатом. Данная реакция...
81576. Биохимические изменения при мышечных дистрофиях и денервации мышц. Креатинурия 106.28 KB
  Общими для большинства заболеваний мышц прогрессирующие мышечные дистрофии атрофия мышц в результате их денервации тенотомия полимиозит некоторые авитаминозы и т. являются резкое снижение в мышцах содержания миофибриллярных белков возрастание концентрации белков стромы и некоторых саркоплазматических белков в том числе миоальбумина. Наряду с изменениями фракционного состава мышечных белков при поражениях мышц наблюдается снижение уровня АТФ и креатинфосфата.
81577. Химический состав нервной ткани. Миелиновые мембраны: особенности состава и структуры 152.07 KB
  Данилевский впервые разделил белки мозговой ткани на растворимые в воде и солевых растворах белки и нерастворимые белки. которые разделили белки нервной ткани на 4 фракции: извлекаемые водой 45 раствором КСl 01 раствором NOH и нерастворимый остаток. В настоящее время сочетая методы экстракции буферными растворами хроматографии на колонках с ДЭАЭцеллюлозой и дискэлектрофореза в полиакриламидном геле удалось выделить из ткани мозга около 100 различных растворимых белковых фракций.
81578. Энергетический обмен в нервной ткани. Значение аэробного распада глюкозы 129.8 KB
  На долю головного мозга приходится 2–3 от массы тела. Следовательно 100 г мозга потребляет в 1 мин 37 мл кислорода а весь головной мозг 1500 г – 555 млкислорода. Газообмен мозга значительно выше чем газообмен других тканей в частности он превышает газообмен мышечной ткани почти в 20 раз. Интенсивность дыхания для различных областей головного мозга неодинакова.
81579. Биохимия возникновения и проведения нервного импульса. Молекулярные механизмы синаптической передачи 109.17 KB
  Молекулярные механизмы синаптической передачи Большинство исследователей придерживаются мнения что явления электрической поляризации клетки обусловлены неравномерным распределением ионов К и Nпо обе стороны клеточной мембраны. Мембрана обладает избирательной проницаемостью: большей для ионов К и значительно меньшей для ионов N. При определенных условиях резко повышается проницаемость мембраны для ионов N. Объясняется это тем что количество ионов N выкачиваемых из клетки с помощью натриевого насоса не вполне точно уравновешивается...
81580. Медиаторы: ацетилхолин, катехоламины, серотонин, γ-аминомаслянная кислота, глутаминовая кислота, глицин, гистамин 107.74 KB
  γАминомасляная кислота выполняет в организме функцию ингибирующего медиатора центральной нервной системы. Действие ГАМК в ЦНС осуществляется путём её взаимодействия со специфическими ГАМКергическими рецепторам Глутаминовая кислота является нейромедиаторной аминокислотой одним из важных представителей класса возбуждающих аминокислот. Эндогенные лиганды глутаминатных рецепторов глутаминовая кислота и аспарагиновая кислота.
81581. Нарушения обмена биогенных аминов при психических заболеваниях. Предшественники катехоламинов и ингибиторы моноаминооксидазы в лечении депрессивных состояний 108.33 KB
  Предшественники катехоламинов и ингибиторы моноаминооксидазы в лечении депрессивных состояний. Например резерпин – понижающее артериальное давление средство специфически тормозит процесс переноса катехоламинов в специальные гранулы нейронов и тем самым делает эти амины доступными действию эндогенной МАО. Многие антидепрессанты вещества снимающие депрессию увеличивают содержание катехоламинов в синаптической щели т. К таким веществам в частности относятся имипрамин блокирует поглощение норадреналина нервными волокнами амфетамин...