42862

Проектний тепловий розрахунок рідинно-рідинного теплообміного апарата

Курсовая

Энергетика

У трубчатому теплообмінному апараті гаряче трансформаторне масло протікає в середині сталевих трубок діаметром . Кількість трубок . Швидкість руху масла . Трансформаторне масло охолоджується від до. Вода, що охолоджує масло, рухається із швидкістю уздовж трубок, які розташовані у кожусі теплообмінника внутрішнім діаметром D. Повздовжній та поперечній кроки труб у пучку складають.

Украинкский

2013-10-31

112.76 KB

8 чел.

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ

“КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ”

Кафедра теплових енергетичних установок теплових та атомних електростанцій

КУРСОВА РОБОТА

По дисципліні «Тепломасообмін та теплопередача»

На тему: Проектний тепловий розрахунок рідинно-рідинного     

  теплообміного апарата

ТС-81217.00.0.14.КР

Виконав:

студент 3-го курсу

Теплоенергетичного

факультету

гр.ТC-81

Лібов Д.С.

Перевірив:

чл..-кор. НАНУ., д.т.н., проф., Н.М. Фіалко

Київ 2010

Зміст

  1.  Завдання на розрахунок………………………………………….3
  2.  Визначення середнього температурного напору………………4
  3.  Розрахунок коефіцієнта теплопередачі…………………………6
  4.  Теплообмінна поверхня апарата………………………………...8
  5.  Висновок…………………………………………………………10
  6.  Література………………………………………………………..

Змн.

Лист

№ докум.

Підпис

Дата

Арк.

2

ТС-81217.00.0.14.КР

Розроб.

Лібов Д.С.

Перевір.

Реценз.

Н. Контр.

Затверд.

Фіалко Н.М.

Проектний тепловий розрахунок рідинно-рідинного рекуперативного теплообмінника

Літ.

Акрушів

11

ТЕФ НУТУКПІ 

11

  1.  ЗАВДАННЯ НА РОЗРАХУНОК РІДИННО-РІДИННОГО ТЕПЛООБМІННОГО АПАРАТА

У трубчатому теплообмінному апараті гаряче трансформаторне масло протікає в середині сталевих трубок діаметром . Кількість трубок . Швидкість руху  масла . Трансформаторне масло охолоджується від до .

Вода, що охолоджує масло, рухається із швидкістю уздовж трубок, які розташовані у кожусі теплообмінника внутрішнім діаметром D. Повздовжній та поперечній кроки труб у пучку складають.

Визначити витрати теплоносіїв, площу поверхні нагрівання апарата, а також необхідну довжину трубного пучка для протиточної схеми руху теплоносіїв, якщ

Змн.

Арк.

№ докум.

Підпис

Дата

Арк.

3

ТС-81217.00.0.14.КР

о температура води на вході до теплообмінного апарата дорівнює .

Значення величин за номером варіанта:

n, шт.

, мм/мм

, м/с

, ºС

, ºС

, м/с

, ºС

D, мм

, мм

163

57/50

1.4

110

50

0,85

21

1000

70

Рис.1. Схема трубчатого секційного теплообмінника

  1.  Секційний теплообмінник складається з декількох послідовно з’єднаних секцій. Кожна   

          секція представляє невеликий трубний пучок, який розміщений в корпусі 1, який                                                                                                                    виготовляється з труби великого діаметра. Окремі секції з’єднуються між собою калачами 3.Відповідно до умов задачі, трансформаторне масло рухається в середині труб. Холодна вода  рухається  в міжтрубному просторі.

  1.  Враховуючи, що dзв/dвн =57/50=1,19<2, то поверхня теплообміну визначається за   

           допомогою рівняння теплопередачі для плоскої стінки.  

                                            ,                                                   (1)

           де Q – теплове навантаження, К – коефіцієнт теплопередачі, - середній  

           температурний напір.      

Змн.

Арк.

№ докум.

Підпис

Дата

Арк.

4

ТС-81217.00.0.14.КР

2. ВИЗНАЧЕННЯ СЕРЕДНЬОГО ТЕМПЕРАТУРНОГО НАПОРУ

2.1  З рівняння теплового балансу теплове навантаження знаходиться як

                                ,                                                                      (2)

де m- масова витрата трансформаторного масла.

2.2  Середня температура гарячого теплоносія

                           (3)

Даній температурі трансформаторного масла відповідають такі теплофізичні властивості

 1 =  843.9 кг/м3;

 Ср1 = 2,026 кДж/(кг К).

2.3  Площа поперечного перерізу для потока трансформаторного масла

   (4)

2.4 Масова витрата гарячого трансформаторного масла

    (кг/с)   (5)

2.5 Теплове навантаження знайдемо з рівняння (2)

 (кВт).

2.6 Методом послідовних наближень знайдемо , використовуючи при цьому рівняння теплового баланса і рівняння нерозривності.

Задаюсь  = 55 0C, тоді середня температура води:

        (6)

даній температурі відповідають такі теплофізичні дані для води

 Ср2 = 4.174 кДж/(кг К);

 2 = 992.9 кг/м3.

2.7 Площа поперечного перерізу каналу по якому протікає холодна вода:

  (7)

  1.  Масова витрата води

                   (кг/с).                                  (8)

  1.  Уточнюємо температуру води на виході

                             (0С)                                      (9)

Похибка склала:

Оскільки знайдена температура незначно відрізняється від прийнятої спочатку, то з цього випливає те, що уточнювати значення  не треба. Приймаємо  0С і

 0С


Змн.

Арк.

№ докум.

Підпис

Дата

Арк.

5

ТС-81217.00.0.14.КР

У завданні задано схема протитечії, для якої характер зміни температури вздовж поверхні теплообміну, показано на рис.2.

        Рис.2 Графік зміни температур теплоносіїв вздовж зміни поверхні теплообміну

2.10 Відповідно до рис.2 :

       (0С),           (10)

  (0C),         (10.б)

2.11 Середній температурний напір при протиточній схемі руху теплоносіїв:

  (0C).        (11)

2.12 Уточнюємо середню температуру трансформаторного масла:

 (0C). (12.1)

2.13 Уточнюємо масову витрату трансформаторного масла  рівняння 5:

Температурі масла  (0C) відповідають такі параметри:

  Ср1 = 2.021 кДж/(кг К);

  1 = 844.66 кг/м3.

(кг/с)

2.14 Уточнюємо тепловий потік з рівняння 2:

(кВт)

2.15 Уточнюємо температуру охолоджувальної води на виході з рівняння 9:

 (0C)

2.16 Уточнюємо температурний напір на вході в теплообмінник з рівняння 10.а:

 (0C)

2.17 Уточнюємо середній температурний напір  згідно рівняння 11:

 (0C)

2.18 Розрахуємо похибки обчислень:

                             

3. Розрахунок коефіцієнта теплопередачі

3.1 Схема процесу теплопередачі в теплообміннику

Рис.3 Схема процесу теплоперед

Змн.

Арк.

№ докум.

Підпис

Дата

Арк.

6

ТС-81217.00.0.14.КР

ачі в теплообміннику

   

     Коефіцієнти тепловіддачі 1 и 2  визначаються за допомогою  емпіричних рівнянь                                                           

      подібності для теплообміну в умовах вимушеного руху рідини.

3.2. Число Рейнольдса для потоку гарячого трансформаторного масла

маємо турбулентний режим течії   (13)

   

      При даній температурі трансформаторного масла  (0C):    

     

     ,

     

  1.  Для встановлення режиму не ізотермічного процесу використовуємо комплекс(Gr Pr) 

     В першому наближені приймаємо, що  0С. (14)

    По  0С;  

       Приймаю , тоді .                                                                                               

   

 

Змн.

Арк.

№ докум.

Підпис

Дата

Арк.

7

ТС-81217.00.0.14.КР

 (17)

Поправка

3.4  Число Рейнольдса для потоку води 

                                                                    (18)

       де      ,

                          

                                                          (19)

3.5 Коефіцієнт тепловіддачі від стінки до потоку води

                                                                 (20)

      При  0С.

          

      

    

    Враховуючи малу товщину стінки і достатньо велике значення коефіцієнта              

     теплопровідності приймаю, що , тоді  .

    Припускаючи, що , тоді .

                                                     (21)

Поправка  

3.6  Товщина стінки трубок

                                        (мм).                                                    (21)

3.7  Коефіцієнт теплопередачі

      ,                                (22)

- берем по табл.6стр.242[1].  

3.8  Щільність теплового потоку

  

3.9  Перевірка температур tC1 и tC2.

                               ,                                         (23)

                         .                                   (24)

3.10  Уточнюємо результати розрахунків коефіцієнта теплопередачі при

     ,    ;

      ,   .

Змн.

Арк.

№ докум.

Підпис

Дата

Арк.

8

ТС-81217.00.0.14.КР

    Тоді нове значення коефіцієнта тепловіддачі буде:

Коефіцієнт теплопередачі:

Щільність теплового потоку:

3.11 Перевірка температури стінок

˚C

     ˚C 

        Такі значення температур не суттєво відрізняються від отриманих в п. 3.9.

        Таким чином кінцеве значення приймаємо .

4. Теплообмінна поверхня апарата

  1.  Площа теплообмінного апарата найдемо, використовуючи формулу  теплопередачі для    

        плоскої стінки (1-1)

.                                                (25)

4.2. Середній діаметр труби і загальна довжина трубного пучка.

,                                                            (26)

.                                      (27)

4.3. Приймаю довжину трубок в одній секції l= 8.873 м.

4.4. Число секцій в теплообміннику

   .                                                                     (28)

4.5. Схему трубчатого теплообмінника показано на рис.4

4.6. Перевірка на l

  Отже, вибране припущення виявилося вірним.

Змн.

Арк.

№ докум.

Підпис

Дата

Арк.

9

ТС-81217.00.0.14.КР

Рис.4. Схема трубчатого теплообмінника з п’ятьма секціями


5. Висновок  

В даній курсовій роботі був виконаний проектний тепловий розрахунок рекуперативного теплообмінного апарата. Закріпили знання и отримали практичні навики теплових розрахунків теплообмінних апаратів. Прийняли остаточно температури , . Масова витрата трансформаторного масла  кг/с, масова витрата охолоджуючої води  кг/с  Площа теплообмінної поверхні . Довжина трубок l = 6м.

   

    

Змн.

Арк.

№ докум.

Підпис

Дата

Арк.

10

ТС-81217.00.0.14.КР

6. Література

  1.  Е.А. Краснощеков, А.С. Сухомел «Задачник по теплопередаче». Изд. 3-е, М., «Энергия». 1975. 280 с.
  2.  П. Исаченко, В.А. Осипова, «Теплопередача».
  3.  Н.М. Фіалко «конспект лекцій з теломасообміну»

 

Змн.

Арк.

№ докум.

Підпис

Дата

Арк.

11

ТС-81217.00.0.14.КР


 

А также другие работы, которые могут Вас заинтересовать

74126. Структура SCADA – систем 18.32 KB
  Специфика каждой конкретной системы управления определяется используемой на каждом уровне программно аппаратной платформой. Датчики поставляют информацию контроллерам которые могут выполнять следующие функции:с бор и обработка информации о параметрах технологического процесса; управление электроприводами и другими исполнительными механизмами; решение задач автоматического логического управления и др...
74129. Операционные системы реального времени 16.47 KB
  Система называется системой реального времени СРВ если правильность её функционирования зависит не только от логической корректности вычислений но и от времени за которое эти вычисления производятся. Говорят что система работает в реальном времени если ее быстродействие адекватно скорости протекания физических процессов на объектах контроля или управления. Здесь имеются в виду процессы непосредственно связанные с функциями выполняемыми конкретной системой реального времени.
74130. Классификация систем реального времени 16.9 KB
  Принято различать системы жёсткого и мягкого реального времени. Системой жёсткого реального времени называется система где неспособность обеспечить реакцию на какие-либо события в заданное время является отказом и ведёт к невозможности решения поставленной задачи. В качестве условной временной границы допустимого времени реакции обычно принимают 100 мкс.
74131. Функции ядра операционной системы реального времени 19.07 KB
  Ядра предоставляют пользователю такие базовые функции как планирование синхронизация задач межзадачная коммуникация управление памятью и т. В дополнение к сервисам ядра многие ОСРВ предлагают линейки дополнительных компонентов для организации таких высокоуровневых понятий как файловая система сетевое взаимодействие управление сетью управление базой данных графический пользовательский интерфейс и т. Многие но не все ядра ОСРВ поддерживают эту группу сервисов.
74132. Внутренняя архитектура операционных систем реального времени 47.63 KB
  Определяется как набор модулей взаимодействующих между собой внутри ядра системы и предоставляющих прикладному программному обеспечению входные интерфейсы для обращений к аппаратуре. Переход из пользовательского режима в режим ядра осуществляется через системные вызовы интерфейс ядра операционной системы. Альтернативой является построение операционной системы на основе микроядра рис. Тогда как функции операционной системы более высокого уровня выполняют специализированные компоненты серверы работающие в пользовательском режиме.
74133. АСКУЭ Энергия+ 17.54 KB
  Комплекс с целью привязки всех данных к точному астрономическому времени оснащён системой обеспечения единого времени. Программируемое управление АСКУЭ Энергия обеспечивается центром сбора и обработки данных ЦСОД в составе: специализированного вычислительного комплекса СВК системы обеспечения единого времени СЕВ; технических средств организации каналов связи выделенных и или коммутируемых. Основные характеристики Основные характеристики определяющие предельные возможности базового программного обеспечения БПО: Характеристика...
74134. Формы осуществления исполнительной власти 15.84 KB
  Различают следующие формы исполнительной власти: правовые связаны с изданием правовых актов которые влекут изменения или превращения административных правоотношений. Правовые формы осуществления исполнительной власти: правотворческая и правоприменительная деятельность. Правоприменительная деятельность органов и должностных лиц исполнительной власти разрешение вопросов управления на основе собственных правовых норм т.