42917

Обнаружение многопозиционного сигнала Баркера на фоне гауссовского шума

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

Королева Кафедра Радиотехники и МДС Курсовая работа по ОКП на тему: Обнаружение многопозиционного сигнала Баркера на фоне гауссовского шума Выполнил: Анашкин С. Цель проектирования – приобретение студентами первого опыта самостоятельной разработки радиотехнической системы с помощью пакета программ OrCD на примере системы обнаружения многопозиционного сигнала на фоне...

Русский

2013-10-31

917.98 KB

5 чел.

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

«Самарский государственный аэрокосмический

университет  имени академика С.П. Королева»

Кафедра Радиотехники и МДС

Курсовая работа по ОКП на тему:

«Обнаружение многопозиционного сигнала Баркера на фоне гауссовского шума»

                                                                                  Выполнил: Анашкин С.А.

Группа 5302

Проверил: Бочкарев В.А.

Самара 2010

РАСЧЕТНОЕ ЗАДАНИЕ


РЕФЕРАТ

Пояснительная записка  22 с, 23 рисунка, 5 источников, 1 приложение.

ДЕМОДУЛЯТОР, КОД БАРКЕРА, МОДУЛЯТОР, РЕШАЮЩЕЕ УСТРОЙСТВО, СИГНАЛ, СОГЛАСОВАННЫЙ ФИЛЬТР, ШУМОВОЕ ВОЗДЕЙСТВИЕ, CAPTURE, PSPIСE.

Цель исследования – Разработать  с помощью пакета OrCAD систему с заданными свойствами для обнаружения кода Баркера на фоне гауссовского шума.

В результате работы получены графические данные о работе основных узлов разрабатываемого устройства.


СОДЕРЖАНИЕ

ВВЕДЕНИЕ………………………………………………………………………..5

1. ГЕНЕРАТОР КОДА БАРКЕРА………………………………………………..6

2.ЧАСТОТНЫЙ МАНИПУЛЯТОР………………………………………..….....8

3. КАНАЛ СВЯЗИ……………………………………………………………….10

4.ДЕМОДУЛЯТОР……………………...……………………………………….12

5. СОГЛАСОВАННЫЙ ФИЛЬТР…………………...………………………….15

6. РЕШАЮЩЕЕ УСТРОЙСТВО..……………………………………………...18

ЗАКЛЮЧЕНИЕ………………………………………………………………….19

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ……………………………20

ПРИЛОЖЕНИЕ А……………………………………………………………….21

ВВЕДЕНИЕ

Настоящая курсовая работа завершает изучение дисциплины "Основы компьютерного проектирования и моделирования РЭС". Цель проектирования – приобретение студентами первого опыта самостоятельной разработки  радиотехнической системы с помощью пакета программ  OrCAD  на примере системы обнаружения многопозиционного сигнала на фоне гауссовского шума (см. рисунок 1).

1

2 3 4 5 6 1

0

  

                                                                                       Uпор

1) генератор  многопозиционного  кода

2) модулятор

3) канал  связи  с  шумом

4) УВЧ  и  демодулятор

5) согласованный  фильтр

6) решающее  устройство

Рисунок  1 – Структурная схема обнаружителя радиосигналов

Генератор сигнала 1 формирует n-позиционный сигнал (код Шермана, Баркера и т.п.), который поступает  на  вход  модулятора  2,  где  осуществляется  манипуляция  несущей  по  амплитуде (АМн),  либо  по  фазе  (ФМн),  либо  по  частоте    (ЧМн). Далее высокочастотный сигнал поступает в радиоканал   3,содержащий передающую и приемную антенны и среду распространения радиоволн, в  которой  действуют  различные источники как естественных, так и   индустриальных   радиопомех.   Из   приемной   антенны   ВЧ - сигнал   поступает   в   усилитель высокой частоты  (УВЧ) и  демодулятор  4.  Согласованный  фильтр  (СФ)  5  обеспечивает подавление  шума  (максимизирует  отношение  сигнал/шум  в  момент  окончания входного сигнала).   Решающее устройство 6 срабатывает   при превышении заданного порогового уровня Uпор сигналом с выхода СФ и формирует короткий прямоугольный импульс. Наличие  этого  импульса ("1") на выходе  решающего  устройства (РУ) свидетельствует об  обнаружении сигнала.

  1.  ГЕНЕРАТОР КОДА БАРКЕРА

Автокорреляционная функция сигнала u(t), заданного на интервале [0,T] вычисляется по формуле:

(1)

Построим график автокорелляционной функции для 7-ми позиционного кода Баркера, используя формулу (1)

                                                                       

Рисунок 2 – АКФ заданного кода Баркера

Преобразование Лапласа вычисляется по формуле (1.2).

(1.2)

Прямое вычисление по формуле (1.2) становится слишком громоздким при большом числе позиций N многопозиционного сигнала u(t). В этом случае используем более простой метод, основанный на известных соотношениях и на скачкообразных изменениях сигнала Баркера:

Тогда искомое преобразование Лапласа U(s) сигнала u(t) примет вид

где U'(s) - преобразование Лапласа производной u'(t).

Найдём преобразование Лапласа семипозиционного сигнала Баркера  с амплитудой А и длительностью одной позиции τ.

В соответствии с предложенной методикой рассчитаем преобразование Лапласа.

Смоделируем источник кода Баркера в пакете OrCAD, (см. рисунок А.1). Проведя анализ сигнала во временной области в программе PSpice. Выведем в графическом модуле Probe результаты – рисунок 3. На рисунке 4 можно видеть частотный спектр сигнала Баркера.

Рисунок 3 – Сигнал Баркера

Рисунок 4 – Спектр сигнала Баркера

2. ЧАСТОТНЫЙ МАНИПУЛЯТОР

Для передачи многопозиционных сигналов по радиоканалу используются дискретные виды модуляции, когда амплитуда, фаза или частота высокочастотной синусоидальной несущей меняется скачком под воздействием модулирующего сигнала u(t), т.e. имеют место, соответственно, амплитудная манипуляция (АМн), фазовая манипуляция (ФМн) и частотная манипуляция (ЧМн).

АМн используется при однополярном модулирующем сигнале типа кода Шермана, а ФМн и ЧМн применяются для передачи биполярных сигналов.

Рисунок 5 – Структурная схема ЧМн модулятора

Наиболее распространенная схема частотного манипулятора  состоит из двух генераторов - несущего колебания с частотами f0 и f0+DF, колебания подаются на два ключа. (см рисунок 5).

Схема частотного манипулятора, спроектированная в OrCAD, представлена на рисунке 6.

Рисунок 6 – Частотный манипулятор

Принципиальная схема модулятора представлена в приложении на рисунке А.6

   Промодулированный сигнал представлен на рисунке 7. Для большей наглядности на рисунке 7 так же показан его спектр и спектры (сверху вниз): входного сигнала, колебаний генераторов, выходного сигнала.

 

 

Рисунок 7 – Временные зависимости и спектры модулированного колебания.

3. КАНАЛ СВЯЗИ

При прохождении сигнала в среде распространения на него накладываются высокочастотные шумы. В результате детектирование полезного сигнала в смеси сигнал-шум становится затруднено.

Шум, присутствующий в канале связи, обычно распределен по закону Гаусса. Кроме того, ширина спектральной области, занимаемая шумом, значительно превосходит ширину спектра полезного сигнала. С учетом этих факторов сигнал на выходе имитатора канала связи с шумом представим в следующем виде:

где umod(t) –сигнал с выхода модулятора

n(t) –высокочастотный нормальный случайный процесс (шум).

Шумовой процесс, в свою очередь, можно разложить на два.

Здесь ξ1 и ξ2 –низкочастотные некоррелированные нормальные случайные процессы,

ω0 – центральная частота спектра шума n(t).

Таким образом, можно смоделировать условия прохождения сигнала через канал связи. Схема шумового воздействия представлена в приложении на рисунке А.2. Результаты расчета в OrCAD представлены на рисунках 8-9.

Рисунок 8 – Сигнал после прохождения через канал передачи.

Рисунок 9 – Спектр сигнала после прохождения через канал передачи.


4. ДЕМОДУЛЯТОР

           ЧМн-демодулятор (рисунок 10) содержит два полосовых фильтра ПФ1 и ПФ2, настроенных на частоты манипуляции F1=f0 и F2=f0+DF, соответственно; две нелинейные цепи НЦ1 и НЦ2, вычитающее устройство ВУ и фильтр нижних частот ФНЧ.

Фактически данная схема представляет собой параллельное включение двух амплитудных детекторов с вычитанием их выходных сигналов (для получения биполярного сигнала   на выходе ФНЧ).

Рисунок  10 -   Структурная схема ЧМн-демодулятора

Для настройки ПФ1 и ПФ2 проведем расчет фильтра в частотной области, и выведем АЧХ ПФ. Для численного контроля симметрии полученной АЧХ относительно частоты f0 ,f0+DF применим функцию измерений B2freq.

Значение целевой функции B2freq близко к нулю, если форма АЧХ симметрична. Можно добиться такого результата, если подобрать соответствующее значение параметра B резонансных усилителей U2 и U4 в режиме оптимизации. При этом все остальные параметры усилителей U2 и U4 остаются фиксированными.

Цель оптимизации – найти такие значения варьируемых значений B и KFR. При оптимизации используется метод наискорейшего спуска, изложенный ниже в сравнении с методами градиента и методом релаксаций.

При использовании метода градиента на каждом шаге нужно определять значения всех частных производных оптимизируемой функции по всем независимым переменным, что требует большого объема вычислений.

Метод релаксаций обладает в этом смысле определенными преимуществами, т.к. при спуске вдоль выбранного осевого направления не требуется вычисления производных. Но движение происходит не в оптимальном направлении.

Сочетание основных идей методов релаксации и градиента дает метод наискорейшего спуска, суть которого заключается в следующем.

После того, как в начальной точке найден градиент оптимизируемой функции и тем самым определено направление ее наибыстрейшего убывания, то в случае поиска минимума целевой функции в данном направлении делается шаг спуска. Если значение целевой функции в результате шага уменьшилось, то производится очередной шаг в этом направлении, и так до тех пор, пока в этом направлении не будет найден минимум целевой функции. После этого вычисляется градиент и определяется новое направление наибыстрейшего убывания целевой функции.

В сопоставлении с методом градиента метод наискорейшего спуска оказывается более выгодным из-за сокращения объема вычислений. По сути, метод наискорейшего спуска по вычислительным затратам эквивалентен методу релаксации, но выгодно отличается от него тем, что по крайней мере первые шаги после определения градиента производятся в оптимальном направлении.

Очевидно, что чем менее резко изменяется направление градиента целевой функции, тем выгоднее использовать метод наискорейшего спуска по сравнению с методом градиента (т.е. вдали от точки оптимума). Вблизи оптимума направление градиента меняется резко, поэтому метод наискорейшего спуска автоматически переходит в метод градиента, т.к. минимум по каждому направлению находится за небольшое количество шагов

Важной особенностью метода наискорейшего спуска является то, что при его применении каждое новое направление ортогонально предыдущему. Это объясняется тем, что движение в одном направлении производится до тех пор, пока направление движения не окажется касательным к какой-либо линии постоянного уровня (так же как и в методе релаксации). Но в отличие от метода релаксации скорость сходимости к точке оптимума не зависит от ориентации системы координат.

В качестве критерия окончания поиска могут использоваться те же условия, что и в методах релаксации и градиента.

После проведения оптимизации для обоих фильтров, проведем еще раз анализ ПФ1 и ПФ2 в частотной области. Результат показан в линейном масштабе на рисунке 11.

Рисунок 11 –  АЧХ полосового фильтра

После моделирования схемы демодулятора представленной в приложении А.3. На выходах блоков демодуляторов получили следующие временные и частотные диаграммы (см. Рисунки 12 – 13).

Рисунок 12 – Сигнал после детектирования

Рисунок 13 – Спектры сигнала после детектирования

5. СОГЛАСОВАННЫЙ ФИЛЬТР

Согласованный (оптимальный) фильтр максимизирует отношение сигнал/шум на своём выходе. Структура СФ в общем случае определяется сигналом Баркера u(t) и вероятностными характеристиками шума n(t). Так, если на входе СФ действует аддитивная смесь: x(t)=u(t)+n(t), где n(t) - гауссовский белый шум, то комплексный коэффициент передачи G(jω) и импульсная характеристика g(t) фильтра имеют вид [1]:

G(jω)=kU*(jω)еxp(-jωt0)

g(t)=ku(t0-t)

Здесь U*(jω) - комплексно-сопряженная спектральная плотность сигнала u(t);

k -коэффициент усиления СФ, задаваемый произвольно;

t0 -временная задержка фильтра, определяемая из условия физической реализуемости:

g(t)=0, t<0  (5.1.)

Условие (5.1.) означает, что отклик фильтра на произвольное входное воздействие не может появиться раньше этого воздействия. Обычно выбирают t0=Т=Nτ - длительность сигнала u(t). Рассмотрим некоторые свойства CФ.

1 - Сигнал на выходе фильтра, согласованного с входным сигналом u(t), совпадает по форме с автокорреляционной функцией (АКФ) этого сигнала, сдвинутой по оси времени на величину t0. Это непосредственно следует из подстановки импульсной характеристики и сигнала u(t) в интеграл Дюамеля, связывающего выходной сигнал с импульсной характеристикой g(t) и входным сигналом u(t). Таким образом, выходной сигнал в момент t=t0 имеет максимум, пропорциональный энергии входного сигнала u(t).

2 - Импульсная характеристика g(t) СФ при t0=0 является зеркальным отображением сигнала u(t)

Что бы синтезировать фильтр необходимо. Найти передаточную функцию СФ. Произведем это по формуле 5.2.:

(5.2.)

В результате получим выражение:

По передаточной функции построить принципиальную схему состоящую их линий задержек и суммирующего устройства (См. рисунок А.4).

Проанализируем схему, подключив к входу сигнал Баркера. В результате получим на выходе АКФ сигнала, сдвинутую на время задержки. Результат представлен на рисунке 14.

Рисунок 14 – Реакция СФ на подачу сигнала Баркера

Теперь можно подключить к входу СФ всю остальную модель. Получим следующие графики (см. рисунки 15 – 16)

Рисунок 15 – Сигнал на выходе СФ

Рисунок 16 – Спектр сигнала на выходе СФ.

Пороговое напряжение для следующего пункта выбрано  Unop=2В


  1.  РЕШАЮЩЕЕ УСТРОЙСТВО.

Решающее устройство предназначено для формирования импульса прямоугольной формы

момент, когда напряжение с выхода СФ превысит заданный пороговый уровень Unop. Факт наличия прямоугольного импульса на выходе РУ свидетельствует об обнаружении сигнала.

В качестве РУ обычно используют операционные усилители в нелинейном режиме, триггеры Шмитта и компараторы. В настоящей курсовой работе применим схему РУ на компараторе K521CA2 в интегральном исполнении.

Принципиальную схему см. рисунок А.5.

Делитель R1, R2 задаёт порог срабатывания компаратора:

Uпор=R2/(R1+R2)E

Напряжение питания E=10В. Полагая R2=1ком, находим R1 (пороговое напряжение Unop определено при анализе СФ).

R1=4 КОм

Выполнив расчет модели в PSpice, на выходе получили прямоугольный сигнал, свидетельствующий об обнаружении сигнала, значит устройство разработано правильно. (См. рисунок 17)

Рисунок 17 – Сигнал на выходе решающего устройства.


ЗАКЛЮЧЕНИЕ

В данной курсовой работе была разработана радиотехническая система детектирования многопозиционного цифрового кода Баркера на фоне шума. Также бала разработана система формирования фазово-манипулируемого сигнала. Был рассмотрен принцип согласованной фильтрации сигнала. В процессе работы над курсовым проектом были получены навыки разработки радиотехнических систем в среде OrCAD:блочная структура проектирования в OrCAD Capture, анализ схем с помощью программы PSpice, работа с полученными данными в постпроцессоре Probe, оптимизация параметров схемы в Otimizer


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Баскаков С.М. Радиотехнические цепи и сигналы. М.: Высшая школа, 1983. - 536с.

 

2. Бочкарев В.А. Методические указания к лабораторным работам по курсу "Основы компьютерного проектирования и моделирования РЭС", СГАУ, 2007.- 42с.

3. В.Д.Разевиг. Система проектирования OrCAD 9.2. - М.: Солон-P, 2001. - 528с., ил.

4. Титце У., Шенк К. Полупроводниковая схемотехника. М.: Мир, 1982. - 512с.

 

5. Ю. И. Болотовский, Г. И. Таназлы. OrCAD. Моделирование. "Поваренная" книга. 2005. - 200 с. - (Серия "Библиотека студента")

 


ПРИЛОЖЕНИЕ А

Рисунок А.1 – Генератор Баркера

Рисунок А.2 – Канал связи

Рисунок А.3 – ЧМн Демодулятор

Рисунок А.4 – Согласованный фильтр

Рисунок А.5 – Компаратор

Рисунок А.6 – Частотный манипулятор


 

А также другие работы, которые могут Вас заинтересовать

30112. Хромосомная теория наследственности (Т. X. Морган и др.) 18.08 KB
  Хромосомная теория наследственности Т. Доказано что количество наследственных признаков организма значительно превышает число хромосом гаплоидного набора. Так в гаплоидном наборе классического объекта генетических исследований мухидрозофилы есть только четыре хромосомы но число наследственных признаков и соответственно генов которые их определяют несомненно значительно больше. Это означает что в каждой хромосоме находится много генов.
30113. Генетика пола, Искусственная регуляция пола 42.68 KB
  Генетика пола Пол это совокупность признаков и свойств организма определяющих его участие в размножении. Пол особи может определяться: а до оплодотворения яйцеклетки сперматозоидом прогамное определение пола; б в момент оплодотворения сингамное определение пола; в после оплодотворения эпигамное определение пола. У морского кольчатого червя бонеллия определение пола происходит в процессе онтогенеза: если личинка садится на дно из нее развивается самка а если...
30114. Цитоплазматическое наследование 12.96 KB
  Цитоплазматическое наследование: Для того чтобы та или иная структура могла выполнять роль материального носителя наследственности и обеспечивать количественные закономерности наследования как уже было сказано она должна обладать тремя основными свойствами: выполнять жизненно важные функции в метаболизме клетки обладать способностью к самовоспроизведению точно распределяться в дочерние клетки при делении. Так центриоли участвуют в образовании веретена при делении клетки пластиды обеспечивают некоторые синтетические процессы митохондрии...
30115. Взаимодействие генов 14.76 KB
  Полное доминирование заключается в том что в гетерозиготе полученной при скрещивании представителей чистых линий различающихся по одной пара альтернативных признаков один из двух аллелей не проявляет своего действия. В фенотипе 3 частей проявился доминантный признак а у 1 части – рецессивный. При неполном доминировании гибриды первого поколения имеют фенотип укладывающийся в рамки проявления признака между исходными родителями и никогда их не достигающий т. признак может быть любым но не как у представителей чистых линий: меньше...
30116. Инструментальные материалы. Упрочняющая обработка 220 KB
  Инструментальными являются материалы, основное назначение которых - оснащение рабочей части инструментов. К ним относятся инструментальные углеродистые, легированные и быстрорежущие стали, твердые сплавы, минералокерамика, сверхтвердые материалы.
30117. Генные мутации 33.8 KB
  Генные мутации. По последствиям генных мутаций их классифицируют на нейтральные регуляторные и динамические а также на миссенс и нонсенсмутации. Нейтральная мутации молчащая мутация мутация не имеет фенотипического выражения например в результате вырожденности генетического кода. Динамические мутации мутации обусловленные увеличением числа тринуклеотидных повторов в функционально значимых частях гена.
30118. Хромосомные мутации и геномные мутации 16.53 KB
  Хромосомные мутации и геномные мутации. Различают два основных типа хромосомных мутаций: численные хромосомные мутации и структурные хромосомные мутации. В свою очередь численные мутации делятся на анэуплоидии когда мутации выражаются в утрате или появлении дополнительной одной либо нескольких хромосом и полиплоидии когда увеличивается число гаплоидных наборов хромосом. Потерю одной из хромосом называют моносомией а возникновение дополнительной хромосомы у любой пары хромосом трисомией.
30119. Модификационная (фенотипическая) изменчивость 16.63 KB
  Характеристика: обратимость изменения исчезают при смене специфических условий окружающей среды спровоцировавших их групповой характер изменения в фенотипе не наследуются наследуется норма реакции генотипа статистическая закономерность вариационных рядов затрагивает фенотип при этом не затрагивая сам генотип.По размаху нормы реакции узкая более характерна для качественных признаков широкая более характерна для количественных признаков 3.По длительности: есть лишь у особи или группы особей которые подверглись влиянию...
30120. Генетика популяций. Генетическая структура популяций и идеальная популяция 37.55 KB
  При описании систем скрещивания в идеальной популяции широко используется понятие панмиксии – случайного свободного скрещивания при котором вероятность встречи гамет не зависит ни от генотипа ни от возраста скрещивающихся особей. Если исключить половой отбор то к панмиктической популяции применима концепция гаметного резервуара согласно которой в популяции в период размножения формируется гаметный резервуар генный пул включающий банк женских гамети банк...