4297

Явление дифракции электромагнитных волн

Лабораторная работа

Физика

Цель работы. Исследовать явление дифракции электромагнитных волн. С помощью дифракционной решетки проходящего света измерить длины электромагнитных волн видимого диапазона. Основные теоретические сведения Дифракцией называется совокупность явлений...

Русский

2012-11-16

118 KB

63 чел.

Цель работы. Исследовать явление дифракции электромагнитных волн. С помощью дифракционной решетки проходящего света измерить длины электромагнитных волн видимого диапазона

2. Основные теоретические сведения

Дифракцией называется совокупность явлений, наблюдаемых при распространении света в среде с резкими неоднородностями ( например, вблизи границ непрозрачных тел, сквозь малые отверстия и т.п.) и связанных с отклонениями от законов геометрической оптики. В частности, дифракция приводит к огибанию световыми волнами препятствий и проникновению света в область геометрической тени. Явление дифракции заключается в перераспределении светового потока в результате суперпозиции волн, возбуждаемых когерентными источниками, расположенными непрерывно.

В данной лабораторной работе для исследования дифракции Фраунгофера используется дифракционная решетка проходящего света, которая представляет собой совокупность узких параллельных щелей, расположенных в одной плоскости (рис.1).

Найдем аналитическое выражение для определения длины волны света с помощью дифракционной решетки. Пусть когерентные волны 1 и 2 падают на решетку нормально к ее поверхности и дифрагируют под углом φ (рис.2). При наблюдении в параллельных лучах под углом φ между лучами соседних щелей возникает одна и та же разность хода d •sin φ . Пройдя дифракционную решетку, волны интерферируют в плоскости экрана. Если в точке наблюдения М наблюдается интерференционный максимум, то разность оптических длин путей 1 и 2 должна быть равна целому числу длин волн:

x= mλ    m=0,1,2… (1)

Таким образом получаем: dsin φ=,   m= 0,1,2,…   (2)

Очевидно, что две любые другие волны, аналогичные волнам 1 и 2 и проходящие на расстоянии d друг от друга, дадут вклад в формирование максимума в точке М, который называется главным максимумом. Условие m=0 в формуле (2) соответствует значению φ =0 и определяет интерференционное условие для центрального максимума, формируемого не дифрагированными волнами, приходящими в центр экрана в одной фазе. При дифракции лучи могут отклоняться от первоначального направления распространения как влево, так и вправо. Отсюда следует, что дифракционный спектр должен быть симметричен относительно центрального максимума. Обозначим углы дифракции φ для максимумов, расположенных слева от центрального, положительными, а справа- отрицательными. Тогда окончательное выражение для главных максимумов в дифракционном спектре:

dsinφ= ± mλ   m= 0,1,2,3,…   (3)

Значения m называют порядком дифракционного максимума. Главные максимумы различных порядков разделены в дифракционном спектре интерференционными (главными) минимумами, в которых волны складываются в противофазе и гасят друг друга попарно.

3. Описание лабораторной установки

Установка состоит из источника света “И”, щели “Щ”, линзы “Л1”, дифракционной решетки “Р”, линзы “Л2” , экрана “Э” и светофильтра “Ф” (рис.3). Щель служит для формирования спектральных линий, разрешенных между собой и придания им формы, подобной форме щели. Линза “Л1” предназначена для устранения расходимости светового пучка и получения резкого изображения спектра на экране. Линза “Л2” фокусирует параллельные лучи, идущие от решетки. Экран расположен в фокальной плоскости линзы “Л2”.

Для определения длины волны используется формула (3).

При этом поступают следующим образом. На экране измеряют расстояние l от центра дифракционной картины до центра максимума порядка m. Это расстояние делят на фокусное расстояние линзы “Л2”. Полученное отношение равно тангенсу угла дифракции φ. Отсюда

   (4)

Для выделения монохроматического излучения используют светофильтр.

4. Экспериментальные результаты.

  1.  Выбрать линзу “Л2”, задав фокусное расстояние L =30 см.
  2.  Получить интерференционную картину на экране.
  3.  Установить красный светофильтр. Измерить расстояние l1 от середины максимума первого порядка до середины центрального максимума по шкале экрана рис.4. Запишем полученное значение в табл.1.

Рис.4

  1.  Повторить измерения для максимума второго порядка.
  2.  Установить фиолетовый светофильтр. Повторить п.2 и п.3 для фиолетового света рис.5.

Рис.5

  1.  По формуле (4) рассчитать углы дифракции первого и второго порядков для красного и фиолетового цвета. Запишем полученные значения в табл.1.
  2.  По формуле (3) рассчитать длины волн фиолетового и красного цвета. Период решетки d= 5мкм. Окончательные значения длин волн вычислить как средние арифметические по максимумам первого и второго порядка одного и того же цвета. Внесем полученные значения длин волн в табл.1.

Расчеты:

По формуле (4) рассчитаем углы дифракции первого и второго порядков для красного и фиолетового цвета при L= 0,3м. По формуле (3) рассчитаем длины волн фиолетового и красного цвета. Период решетки d= 5мкм. Окончательные значения длин волн вычислим как средние арифметические по максимумам первого и второго порядка одного и того же цвета.

Для красного цвета:

m=1

I ÷ L = 0,0424 ÷ 0,3 = 0,14133

φ=arctg (I ÷ L) = arctg (0,14133) = 80 

λ1 = d∙sin φ ÷ m =5∙10-6 sin80  ÷ 1 = 0,69971∙10-6 = 0,6997 мкм

m=2

I ÷ L = 0,0874 ÷ 0,3 = 0,29133  

φ=arctg (I ÷ L)  = arctg (0,29133) = 160

λ2 = d∙sin φ ÷ m =5∙10-6 sin160 ÷ 2 = 0,69926∙10-6 = 0, 69926 мкм

средние арифметические по максимумам первого и второго порядка

λкр = (λ1 + λ2) ÷ 2 = (6,9971 + 6,9926) ∙10-7 ÷ 2 = 0,69948∙10-6= 0, 69948 мкм

Для фиолетового цвета:

m=1

I ÷ L = 0,025 ÷ 0,3 = 0, 0833

φ=arctg (I ÷ L)  = arctg (0, 0833) = 4,80 

λ1 = d∙sin φ ÷ m = 5∙10-6 sin4,80  ÷ 1 = 0,41523∙10-6 = 0, 41523 мкм

m=2

I ÷ L = 0,0505 ÷ 0,3 = 0,1683

φ=arctg (I ÷ L) = arctg (0,1683) = 9,60

λ2 = d∙sin φ ÷ m =5∙10-6 sin9,60 ÷ 2 = 0,41499∙10-6 = 0, 41499 мкм

средние арифметические по максимумам первого и второго порядка

λф = (λ1 + λ2) ÷ 2 = (4,1523 + 4,1499) ∙10-7 ÷ 2 = 0,41511∙10-6= 0, 41511 мкм

Таблица 1.

Значение

красный

фильтр

фиолетовый

фильтр

L , м

0,3

0,3

0,3

0,3

I , м

0,0424

0,0874

0,025

0,0505

m

1

2

1

2

λ , мкм

0,69971

0,69926

0,41523

0,41499

φ , 0

8

16

4,8

9,6

λср , мкм 

0,69948

0,41511

  1.  Выводы по проделанной работе.

В соответствии с формулой (3) линия красного цвета располагаться дальше от центра дифракционной картины по сравнению с линией фиолетового цвета в максимуме любого порядка  рис.1 и рис.2.

Дифракционный спектр симметричен относительно центрального максимума.

Значение длины волн по максимумам первого и второго порядка одного и того же цвета практически равны.

5. Контрольные вопросы

  1.  Максимум какого наибольшего порядка может наблюдаться на данной дифракционной решетке?

Наибольший порядок спектра наблюдается под углом дифракции φ =±π÷2 

|sin (±π÷2)|= 1;   1 = kλ ÷ d  

k = d ÷ λ = 5∙10-6÷ 0,41511∙10-6=12,05

kmax = 12

  1.  Дайте понятие дифракции. В чем сущность принципа Гюйгенса- Френеля?

Дифракции есть огибание волнами препятствий или отклонение от прямолинейного распространения в оптически неоднородной среде.

Сущность принципа Гюйгенса - Френеля можно представить в виде нескольких положений:

-всю волновую поверхность, возбуждаемую каким-либо источником S0  площадью S, можно разбить на малые участки с равными площадями dS, которые будут являться системой вторичных источников, испускающих вторичные волны;

-эти вторичные источники, эквивалентные одному и тому же первичному источнику S0, когерентны между собой;

-мощности излучения всех вторичных источников - участков волновой поверхности с одинаковыми площадями - одинаковы;

-каждый   вторичный   источник  (с площадью dS)  излучает преимущественно в  направлении внешней нормали  к волновой поверхности в этой точке;  амплитуда вторичных волн в направлении, составляющем с  нормали угол , тем меньше, чем больше угол φ;  

-амплитуда   вторичных   волн,   дошедших   до   данной   точки пространства, зависит от расстояния вторичного источника до этой точки: чем больше расстояние, тем меньше амплитуда;

-когда часть волновой поверхности S прикрыта непрозрачным экраном, вторичные волны излучаются только открытыми участками этой поверхности.

  1.  Расскажите об устройстве и назначении дифракционной решетки проходящего света.

В данной лабораторной работе для исследования дифракции Фраунгофера используется дифракционная решетка проходящего света, которая представляет собой совокупность узких параллельных щелей, расположенных в одной плоскости (рис.1). Ширина всех щелей одинакова и равна b, а расстояние между щелями равно a. Величину d=a+b называют периодом (постоянной) дифракционной решетки. Если полное число щелей решетки равно N, то длина дифракционной решетки равна  r=Nd. Обычно, длина щелей много больше периода решетки, а ширина щели b≥λ.

Дифракционные решетки являются главной частью дифракционных спектрометров – приборов, предназначенных для измерения длин волн электромагнитного излучения, проходящего сквозь них для разложения излучения в спектр. 

  1.  Объясните порядок чередования цветов в спектре, полученном в п.2 Задания.  

Если на щель простого спектроскопа  направить свет от лампы накаливания, то на экране возникает непрерывный спектр со следующим порядком чередования цветов: фиолетовый, синий, голубой, зеленый, желтый, оранжевый и красный. Видимый спектр простирается от 750 нм (красная граница) до 400 нм (фиолетовая граница). Свет этих длин волн воспринимается человеческим глазом, и именно на эту область приходится большое число спектральных линий атомов.

6. Литература

  1.  Савельев И.В. Курс общей физики.- М.: Наука, 1988, т.2, §§ 125,126,130.


 

А также другие работы, которые могут Вас заинтересовать

35484. Процесcы в Windows 143.5 KB
  Потоки Процессы инертны. Отвечают же за исполнение кода содержащегося в адресном пространстве процесса потоки. Поток thread некая сущность внутри процесса получающая процессорное время для выполнения. В каждом процессе есть минимум один поток.
35485. Процессы. Системные вызовы fork() и exec(). Нити 11.64 KB
  Процесс в Linux как и в UNIX это программа которая выполняется в отдельном виртуальном адресном пространстве. Когда пользователь регистрируется в системе автоматически создается процесс в котором выполняется оболочка shell например bin bash. Linux поддерживает параллельное или квазипараллельного при наличии только одного процессора выполнение процессов пользователя. Каждый процесс выполняется в собственном виртуальном адресном пространстве т.
35486. Режимы ядра и пользователя Windows 73.01 KB
  Windows NT раньше поддерживала несколько архитектур центральных процессоров включая PowerPC и Alpha современные версии Windows NT поддерживают только процессоры компании Intel и совместимые с ними модели например компании AMD. Страницы памяти которые содержат код в отличие от данных могут быть отмечены как предназначенные только для чтения пользовательскими процессами и кодом на уровне ядра Приложения которые выполняются в пользовательском режиме получают доступ к службам ядра Windows NT вызывая специальные инструкции допускающие...
35487. Информационные процессы 256 KB
  Будем различать данные знания и информацию: информацию можно получить после соответствующей обработки знаний или данных.ru : информацию по отраслям статистики; интегрированные базы данных; статистическую информацию первичных отчетов. Государственная система правовой информации включает: комплекс баз данных правовой информации содержащей более 340000 правовых актов; база данных действующего российского законодательства; база данных судебной статистики и т. Централизованное базируется на базах данных МЧС МВД и т.
35488. Информационные системы в экономике. Общая характеристика методов формирования решений 124.5 KB
  Принятие решения это всегда выбор определенного направления деятельности из нескольких возможных. Следует различать два процесса: формирование решения и принятие решения. Формирование решения это подготовка исходных данных и их обработка таким образом что бы было ясно последствия его принятия. Принятие решения это изучение различных вариантов их последствий и утверждение одного из них.
35489. Экономические информационные системы 139.5 KB
  Наиболее распространенными формами такого рода моделей являются: диаграммы потоков данных сети Петри сети управления и планирования модели баз данных модели баз знаний и т. Большинство бизнеспроцессов воспроизводятся с помощью диаграмм потоков данных. В зависимости от целей моделирования внимание может быть сосредоточено либо на процессах бизнеспроцесса либо на объектах либо на потоках данных. Если необходимо воспроизвести объекты и связи между ними то пользуются стандартом IDEF1 а при необходимости моделирования потоков данных ...
35490. Информационные системы. Процесс информатизации 78.5 KB
  Информационный процесс. Характеристика его составляющих Информационный процесс процесс получения создания сбора обработки накопления хранения поиска распространения и использования информации. Базовыми фундаментальными понятиями экономической информатики являются: данные; информация и экономическая информация; информационный процесс; задача и экономическая задача; знания; Данные В повседневной жизни мы сталкиваемся с сообщениями об объектах событиях процессах от различных источников. Информационная система это...
35491. Информационные системы. Шпаргалка 163 KB
  Для информационных систем характерно Многоаспектность Многофункциональность Различные сферы применения Поэтому классифицировать информационные системы сложно. Могут быть системы: автоматизированные слабо автоматизированные и не автоматизированные Уровень интеграции информационных процессов. Могут быть системы: интегрированные процессные информационные системы выполненные на единой информационной базе и обеспечивающие сквозную связь между всеми элементами ИС. Онги поддерживают управление бизнеспроцессами ...
35492. Информационные системы и информационные технологии 93.5 KB
  TPS Транзакционные технологии TPS Trnsctions Processing Systems предназначены для ежедневной обработки поступающих в виде документов сообщений счета акты накладные и т. MIS Технологии поддерживающие управленческие функции MIS Mngement Informtion Systems предназначены для автоматизации планирования деятельности предприятия организации а также для организации контроля над ходом выполнения планов производства и реализации продукции. DSS Технологии аналитической обработки данных DSS Decision Support Systems...