43039

Малошумящий РПУ

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

Мы выбираем ВПЧ, т.к. оно обеспечивает оптимальный режим работы смесителя и гетеродина, а также обеспечивает максимальную чувствительность и удовлетворяет требованию сопряжения контуров

Русский

2013-11-03

370.5 KB

2 чел.

 

2.Предварительный расчет

1.Распределение между каскадами частотных и нелинейных искажений

МВЧ(дБ) = МВХ.У + МУРЧ + МУПЧ + МФ.ПЧ      (1)

МВЧ(дБ) = МВХ.У + МУРЧ + МУПЧ + МФ.ПЧ = 2+1+22+3 = 10

МОБЩ (дБ) = МВЧ + МУЗЧ        (2)

МОБЩ (дБ) = МВЧ + МУЗЧ = 10+2 = 12

Получившееся значение М превышает заданное значение (10), значит необходимо уменьшить М.

12 -10 = 2

12 – 100%

2 – х%

х== 16,6%

а)МВХ.Ц.= 2 - 0,332 = 1,668дБ

 2 – 100%

 х – 16,6%

х== 0,332

б)МУРЧ = 1 - 0,166 = 0,834 дБ

 1 – 100%

 х – 16,6%

х==0,166

в)МУПЧ=1,6682=3,336 дБ

 

г)МФ.ПЧ.=2,502

МОБЩ (дБ) = 10,34дБ

При дальнейшем уменьшении частотных искажений получим

МВХ.Ц.=1,6 дБ

МУРЧ =0,8 дБ

МУПЧ=3,2 дБ

МФ.ПЧ.=2,4 дБ

При данных значениях МОБЩ (дБ) =10

 

        

МТКП.Т.3.03.04.06.01.П3

Лист

Изм.

Лист

Докум.

Подп.

Дата

Определение нелинейных искажений

КГ ОБЩГДГУЗЧ         (3)

КГ ОБЩГДГУЗЧ=1+3=4%

Условие КГ ОБЩ КГ (410) выполняется

2.Определение эквивалентной добротности контуров входной цепи и УРЧ, и необходимость применения УРЧ

 Из заданных параметров QК=120, значит

 QЭ=0,5110= 60

 Мы выбираем ВПЧ, т.к. оно обеспечивает оптимальный режим работы смесителя и гетеродина, а также обеспечивает максимальную чувствительность и

удовлетворяет требованию сопряжения контуров  

         fЗК= fC MAX+2fПР         (4)

 fЗК= fC MAX+2fПР= 1600+ 930 = 2530 кГц

         

                   (5)

Переводим избирательность в разы

 SeЗК=40 дБ = 100    

==66,7                                                   (6)

несоблюдается условие   пересчитаваим при nc=2

==4

        условие           соблюдается

       (7)

= 2(5+3+0,32)=16,64 кГц

 

М = МВХ.Ц+ МУРЧ         (8)

М = МВХ.Ц+ МУРЧ= 2,4 дБ

Переводим в разы

М = 2,4 дБ = 1,31

 

 Соблюдается условие

Вывод: Расчеты показали, что необходим один каскад УРЧ

МТКП.Т.3.03.04.06.01.П3

Лист

Изм.

Лист

Докум.

Подп.

Дата

 3.Определение числа поддиапазонов и выбор схемы входной цепи, а также выбор переменного конденсатора ( подстроечного )

По рекомендациям конспекта выбираем схему с внутренней ферритовой антенной  

   

Конденсаторы выбираются по принципу номинального значения

Переменный конденсатор – КПЕ воздух – СК MAX =365 пФ   СК MIN = 10пФ

Подстроечный конденсатор – ПКП-2 воздух  -    СК MAX = 60пФ      СК MIN= 6 пФ

        (9)

= 3+5+15,5=23,5 пФ

        (10)

==3,4

         (11)

=1,021600=1632 кГц

         (12)

=0,98500=490 кГц

                   (13)

==3,33

          Т.к. КДКДС  , значит в приемнике применяется один диапазон

4.Выбор типа транзистора и схемы его включения в каскадах УПЧ и смесителя

Выбираем транзистор ГТ309Е, т.к.

 fГР10fCMAX                  fГР=40 МГц

КШ=4 дБ – из параметров на транзистор КШ=5 дБ – из заданных параметров

 h11Б=34 Ом  -  Входное сопротивление

 h21Э=48  -  статический коэффициент передачи тока

 IК=10 мА  -  ток коллектора

 

 5.Определение необходимого коэффициента усиления

                                      (14)

МТКП.Т.3.03.04.06.01.П3

Лист

Изм.

Лист

Докум.

Подп.

Дата

         

= Ом

                   (15)

= Ом

 

         (16)

 

          (17)

            (18)

=

           (19)

 мкВ

                        (20) 

 =

        

       6.Выбор схемы детектора и типа диода

По рекомендации преподавателя выбираем последовательную схему детектора

Выбираем диод - ГД

 

МТКП.Т.3.03.04.06.01.П3

Лист

Изм.

Лист

Докум.

Подп.

Дата

 

      7.Распределение усиления по каскадам РПУ и определение числа каскадов УПЧ

 

 

                 (21)  

 

Соблюдается условие

       (22)

 =1,7

           

       Выбираем 2 каскада УПЧ

 

       (23)

 

 

      Уменьшаем КУПЧ до 12,8 и получаем КОБЩ=6880

МТКП.Т.3.03.04.06.01.П3

Лист

Изм.

Лист

Докум.

Подп.

Дата

 

8.Выбор избирательной системы ПЧ иУПЧ

      (24)

=

       (25)

где N – число каскадов УПЧ

=

По рекомендациям из конспекта при     SeСК<41,25  выбираем пьезокерамический фильтр        ФП1П-041   

                        

                     

                            

9.Выбор схемы АРУ и расчет количества регулирующих каскадов УПЧ

По рекомендации преподавателя выбираем схему АРУ с задержкой, построенной по схеме с ОС.

         (26)

=15-3=12

         (27)

 

Выбираем один регулирующий каскад УПЧ   

МТКП.Т.3.03.04.06.01.П3

Лист

Изм.

Лист

Докум.

Подп.

Дата

  

3.Выбор и обоснование электрической структурной схемы

Схема данного супергетеродинного приемника состоит из: входной цепи, смесителя с совмещенным гетеродином, полосового фильтра, 4-х каскадов УПЧ, детектора, АРУ, 2-хкаскадного УЗЧ, выходного  устройства, источника питания и вспомогательных устройств.

Входная цепь необходима для формирования избирательности:

 1)по соседнему каналу

 2)по зеркальному каналу

 3)по каналу прямого прохождения

Из расчетов получено, что использовать УРЧ не нужно

Преобразователь частоты осуществляет перенос спектра звукового сигнала с радиочастоты на постоянную промежуточную частоту, тем самым улучшая основные характеристики РПУ

Он состоит из:

1)Смесителя, который осуществляет преобразование частоты по следующему закону         - НПЧ                     - ВПЧ

2)Гетеродин – осуществляет генерацию несущей частоты

3)ПФ – осуществляет выделение сигнала промежуточной частоты и окончательно формирует избирательность по соседнему каналу.

УПЧ усиливает сигнал до величины необходимой для работы детектора, также здесь формируется основной коэффициент усиления линейной части РПУ; Если необходимо окончательно формирует избирательность по соседнему каналу

Из расчета получено, что для необходимого коэффициента усиления необходимо использовать 4 каскада УПЧ

Детектор производит демодуляцию радиосигнала, т.е. получение из спектра радиосигнала сигнала звуковой частоты

АРУ (автоматическая регулировка усиления) предназначена для уменьшения изменения сигнала на входе УЗЧ по сравнению с изменением этого сигнала на входе УПЧ

УЗЧ состоит из предварительного и выходного усилителя, предназначен для усиления сигнала звуковой частоты для нормальной работы выходного устройства.

Выходное устройство преобразовывает сигнал в звуковой

Вспомогательные устройства – это устройства выполняющие различные функции: включение/выключение ИП, регулировка тембра, регулировка громкости и т.д.

ИП необходим для питания схемы.

      

МТКП.Т.3.03.04.06.01.П3

Лист

Изм.

Лист

Докум.

Подп.

Дата

  

4.Выбор и обоснование электрической принципиальной схемы

 По рекомендациям из конспекта выбираем входную цепь с внутренней ферритовой антенной: С1-подстроечный конденсатор обеспечивает компенсацию технологического разброса Спер

С2- переменный конденсатор обеспечивает перестройку к\к в диапазоне входного сигнала

С3 – разделительный конденсатор, осуществляет развязку по постоянной составляющей

По рекомендации преподавателя была выбрана схема с совмещенным гетеродином

На транзисторе VT1 собран как смеситель, так и гетеродин

С5,С6,С7,С8,L7 – являются контуром гетеродина

R1,R3 – формируют начальную рабочую точку

R2 – осуществляет эмитторную стабилизацию

Из предварительного расчета следует, что необходимо выбрать фильтр сосредоточенной селекции на LC звеньях, по рекомендации преподавателя выбираем трехзвенный ФСС

Выбираем УПЧ с общим эмиттором по рекомендации преподавателя

С18,С19,L9 – к\к УПЧ

R4 – формирует рабочую точку, в данном случае ,т.к. в результате воздействия АРУ значительно изменяется рабочая точка, то дополнительной стабилизации с помощью цепочки эмитторной стабилизации не требуется не требуется.

С19 – уменьшает вносимую паразитную емкость

R5,R6,С21  - фильтр

По рекомендациям преподавателя выбираем схему последовательного детектора

В качестве активного элемента в данной схеме применяется диод – VD1

 По рекомендациям преподавателя выбираем АРУ с задержкой

С40,VD2,R16 – детектор АРУ

R14,R15 – формирует заданное напряжение, которое как  запирающее подается на VD2

R27,С45 – интегрирующий фильтр АРУ, формирует управляющее напряжение

Схема УЗЧ выбрана по рекомендации преподавателя.

МТКП.Т.3.03.04.06.01.П3

Лист

Изм.

Лист

Докум.

Подп.

Дата

  

5.Окончательный расчет схемы входной цепи

ССХ – берется из предварительного расчета

 

      (28)

  мкГн

По ГОСТ выбираем L=260 мкГн

РВХ - берется из предварительного расчета

СП - берется из предварительного расчета

 

         (29)

 мкГн

По ГОСТ выбираем  LСВ=10 мкГн

Е - берется из предварительного расчета

 

       (30)

0,00748 м

        (31)

 

         (32)

= мкВ

Окончательный расчет оказал влияние на предварительный, необходимо пересчитать коэффициент усиления

 

 

Необходимо уменьшить КУПЧ до 13,6, при этом значении КОБЩ=7768

МТКП.Т.3.03.04.06.01.П3

Лист

Изм.

Лист

Докум.

Подп.

Дата

  

6.Расчет надежности схемы входной цепи

 - для катушек индуктивности

 - для подстроечного конденсатора

 - для переменного конденсатора

Время работы 500 часов

Общая интенсивность отказов

        (40)

 

Вероятность безотказной работы

 P(t)=e-ОБЩTp         (41)

 P(t)=e-ОБЩTp=e-0,09410 500=0,9999

Средняя наработка на отказ

           (42)

==10638297ч

 

 

МТКП.Т.3.03.04.06.01.П3

Лист

Изм.

Лист

Докум.

Подп.

Дата

  

1.Введение

  Радио от латинского “radiare” – излучать, испускать лучи.

Радио изобрел русский ученый Александр Степанович Попов. Датой изобретения принято считать 7 мая 1895г., когда А.С.Попов выступил с публичным докладом и демонстрацией работы своего радиоприемника на заседании Физического отделения Русского физико-химического общества в Петербурге.

Развитие электроники после появления радио можно разделить на 3 этапа:

Радиотелеграфный, радиотехнический и этап собственно электроники.

В первый период (около 30 лет) развивалась радиотелеграфия и разрабатывались научные основы радиотехники. С цель упрощения устройства радиоприемника и повышения его чувствительности велись интенсивные разработки и исследования различных типов простых и надежных обнаружителей ВЧ колебаний – детекторов.

В 1904г. Была построена первая двухэлектродная лампа – диод – она до сих пор используется в качестве детектора  ВЧ колебаний.

Триод был предложен в 1907г. В 1913г. Была разработана схема лампового регенеративного приемника и с помощью триода были получены незатухающие электрические колебания.

С 1913г. По 1920г. Радиотехника становится ламповой.

Первые радиолампы в России были изготовлены Н.Д.Папалекси в 1914г в Петербурге. Однако они были не вакуумными, а газонаполненными (с ртутью). Первые вакуумные лампы были изготовлены в 1916г. М.А.Бонч-Бруевичем.

В 1918г. Был создан в стране первый научно-радитехнический институт. В 1922г. В Нижегородской радиолаборатории О.В.Лосевым была открыта возможность генерировать и усиливать радиосигналы с помощью полупроводниковых приборов. Им был создан безламповый приемник – кристадин. Однако в те годы не были разработаны способы получения п\п материалов, и его изобретениене получило распространения.

Во второй этап (около 20 лет) широкое развитие и применение получили радиотелефонирование и радиовещание, были созданы радионавигация и радиолокация.

Переход от длинных волн к коротким и средним, а также изобретение схемы супергетеродина потребовали применение ламп более совершенных, чем триод. Тогда в 1924г. Был изобретен тетрод, а в 1930-31гг. – пентод.

Освоение и использование УКВ привело к разработке электровакуумных приборов с новым принципом управления электронным потоком – многорезонаторных магнетронов, клистронов, ламп бегущей волны.

Последний этап (60-е 70-е годы) составляет эпоху п\п техники.

В этот период продолжатся усовершенствование, продолжались интенсивные работы в области твердого тела и теории п\п, разрабатываются методы монокристолов п\п. В 1948г. Американские ученые Бардин и Браттей создали германиевый точечный триод – транзистор. В началу 70-х точечные транзисторы практически не применялись, а основным типом транзистора является плоскостной. К концу 1952г были предложены плоскостной ВЧ тетрод, полевой транзистор и другие типы п\п приборов.

МТКП.Т.3.03.04.06.01.П3

Лист

Изм.

Лист

Докум.

Подп.

Дата

  

7.Заключение

 Мной разработан супергетеродинный РПУ

Также был произведен окончательный расчет схемы входной цепи и расчет ее надежности. Все требования и параметры были соблюдены

МТКП.Т.3.03.04.06.01.П3

Лист

Изм.

Лист

Докум.

Подп.

Дата

Московский техникум космического приборостроения

Утверждено

На заседании предметной комиссии

10.09.1986г.

Задание

для курсового проектирования по Радиоприемным устройствам

Учащийся отделения     1           курса         3         группы     Т32-02

Студент                   Бочков И.А.

Тема задания:  Произвести предварительный расчет малошумящего транзисторного супергетеродинного радиоприемного устройства и по результатам выполненного расчета составить электрическую структурную и электрическую принципиальную схемы РПУ. Выполнить окончательный расчет заданного каскада, произвести расчет его надежности.

Срок окончания:      14 июня 2005 г.
Курсовой проект на указанную тему выполняется учащимся техникума в следующем объеме:

  1.  Пояснительная записка – выполняется согласно требованиям раздела №3 методического пособия по курсовому проектированию.

2. Расчетная часть проекта:

а) Произвести предварительный расчет заданного приемника

б) Произвести окончательный расчет входной цепи

в) Произвести расчет надежности схемы входной цепи

3. Графическая часть проекта:

а) Схема электрическая структурная (Э1) – формат А3

б) Схема электрическая принципиальная (Э3) – формат А3

в) Схема электрическая принципиальная (Э3) – формат А4

Дата выдачи

МОСКОВСКИЙ ТЕХНИКУМ КОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ

Малошумящий РПУ

Пояснительная записка

МТКП.Т.3.03.04.01.П3

                          02.Э1

                         03.Э3

ТЗ2-02

Руководитель разработки

Л.А.Савельев

Разработал

А.И.Шведов

2005

 

1. Диапазон частот входного сигнала (МГц)      0,5 – 16

2. Чувствительность РПУ (реальная) (мкВ, мВ/м)     1,5

3. Избирательность по соседнему каналу (дБ)     50

4. Избирательность по зеркальному каналу (дБ) 40

5. Избирательность по каналу прямого

   прохождения (дБ)       30

6. Промежуточная частота (кГц)    465 +/- 0,02

7. Суммарный коэффициент шума (дБ)   7

8. Полоса частот (кГц)      0,1– 5

9. Частотные искажения (дБ)     8

10. Нелинейные искажения (%)    10

11. Напряжение питания определяется в процессе проектирования

12. Изменение сигнала на входе D (дБ)   15

13. Изменение сигнала на входе D0 (дБ)   3

14. Выходная мощность       0,5

15. Условия эксплуатации – to окружающей среды -40о +50о С; время работы 500 часов

                                             

СОДЕРЖАНИЕ

1.Введение           

2.Предварительный расчет РПУ

3.Выбор и обоснование электрической структурной схемы РПУ

4.Выбор и обоснование электрической принципиальной схемы РПУ

5.Окончательный расчет схемы входной цепи

6.Расчет надежности схемы входной цепи

7.Заключение

Список литературы

МТКП.Т.3.03.04.06.01.П3

Изм.

№ докум.

Подп.

Дата

Разр.

Шведов

    Супергетеродинный  

   радио приемное устройство

      пояснительная записка

Лит.

Лист

Листов

Пров.

Савельев

1

Т32-02

Список литературы

 

МОСКОВСКИЙ ТЕХНИКУМ КОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ

                            Пояснительная записка

                           МТКП. Т.3.03.04.06.01.ПЗ

                                            Т32-02

Руководитель разработки                                            Савельев Л.А.

Разработал                                                                     Бочков И.А.        

                                                                     2005г


 

А также другие работы, которые могут Вас заинтересовать

21185. Векторний та змішаний добутки векторів. Площина та пряма в просторі 522 KB
  У множині геометричних векторів можна ввести так званий векторний добуток двох векторів коли кожній парі векторів співставляється третій вектор який і називається їх добутком: . Вектор направлений перпендикулярно площині в якій лежать вектори і і в таку сторону щоб трійка векторів складала праву трійку інакше кажучи щоб ці вектори були орієнтовані по правилу правої руки Рис.1 Векторний добуток векторів Довжина вектора визначається за формулою 15.
21186. Лінійні оператори. Матриця оператора 476.5 KB
  Лінійні оператори. Матриця оператора. Лінійні оператори.
21187. Власні числа та власні вектори оператора. Самоспряжені оператори 822 KB
  1 то він називається власним вектором оператора а число його власним числом. Таким чином дія оператора на власний вектор дає той же вектор помножений на власне число. Це алгебраїчне рівняння степені називається характеристичним рівнянням оператора .
21188. Ортогональні оператори. Квадратичні формию. Криві другого порядку 282 KB
  2 то одержимо друге означення ортогонального оператора або .3 Звідси маємо для матриці ортогонального оператора або 18.5 показує що рядки стовпці матриці ортогонального оператора ортогональні.1 витікають властивості ортогонального оператора: 1 Якщо ортогональний то і ортогональні.
21189. Криві другого порядку 454.5 KB
  Як було показано в попередній лекції загальне рівняння другого порядку в системі координат побудованій на власних векторах матриці квадратичної форми рівняння має вид 18.1 Спочатку розглянемо випадок коли це рівняння еліптичного або гіперболічного типу тобто . Якщо то рівняння 19. Якщо маємо два рівняння прямих що проходять через новий початок координат .
21190. Поверхні другого порядку 575 KB
  Розглянемо більш загальне рівняння яке містить в собі і квадратичний вираз на предмет того який геометричний об€єкт воно описує.1 перетвориться у рівняння 20. В новій системі координат рівняння 20. Перепишемо рівняння 20.
21191. Матриці. Лінійні дії з матрицями. Поняття лінійного простору 207 KB
  Лінійні дії з матрицями. Вона характеризується таблицею чисел яку можна записати окремо і розглядати як суцільний об€єкт що має назву €œматриця€ лат.2 Очевидно що матриця є узагальненням як числа так і вектора. Дійсно при m=1 n=1 матриця зводиться до числа при m=1 n=3 вона є векторрядок а при m=3 n=1 векторстовпець.
21192. Множення матриць. Поняття детермінанта 255.5 KB
  Множення матриць. Розглянемо якісно нову відмінну від введених в попередній лекції операцій а саме нелінійну операцію множення матриць. Визначити операцію множення матриць це означає вказати яким чином даній парі матриць ставиться у відповідність третя матриця яка і буде їх добутком.
21193. Властивості детермінантів 220.5 KB
  Детермінант транспонованої матриці дорівнює детермінанту даної. З очевидної рівності випливає що детермінант можна записати також у вигляді == =.2 Після транспонування одержимо детермінант в добутках якого індекси множників помінялись місцями.