43100

Построить стационарные характеристики (АЧХ и ФЧХ) и переходную характеристику цепи

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

Для нахождения стационарных и переходных характеристик цепи целесообразно рассчитать операторную передаточную функцию цепи К(р), т. е. передаточную функцию в зависимости от обобщенной частоты

Русский

2013-11-04

566.5 KB

234 чел.

Федеральное агентство по образованию РФ

Государственное образовательное учреждение высшего профессионального образования «Ижевский государственный технический университет»

Кафедра «Радиотехника»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе по дисциплине

«Радиотехнические цепи и сигналы»

Вариант № 6.1

Выполнил: студент гр.6-20-1

 Тугбаев Ю.Г.

  

                                                                                      Проверила: Трефилова Т.Ю.

Ижевск  2008

Содержание

Техническое задание……………………………………………….…………………3

  1.  Расчет стационарных характеристик цепи…………………….………………...4
    1.  . Расчет операторной передаточной функции цепи……….…………………4

1.2. Расчет комплексного частотного коэффициента передачи.………………..6

1.3. Расчет амплитудно-частотной характеристики цепи (АЧХ).………………6

1.4. Расчет фазо-частотной характеристики цепи (ФЧХ)……………………….8

  1.  Расчет переходной характеристики цепи………...…………………..…...…….. 9
  2.  Нахождение спектра входного сигнала…………………….……….…..……….11
  3.  Нахождение спектра выходного сигнала……………………....…....…………..15

Заключение…………………………………………………….………..…………….18

Список литературы………………………………………………...…………………19

Приложение…………………………………………………......…………………….20

Техническое задание

На вход цепи (рис. 1) подается периодическая последовательность прямоугольных импульсов:

Построить стационарные характеристики (АЧХ и ФЧХ) и переходную характеристику цепи. Найти спектр выходного сигнала и сравнить его со спектром входного, если:

E = 5 В,

R = 2 кОм,

С = 0,05 мкФ,

τ = 1 мс,

Т = 10 мс.

Рис. 1. Схема заданной электрической цепи

1. Расчет стационарных характеристик цепи

1.1 Расчет операторной передаточной функции цепи.

Для нахождения стационарных и переходных характеристик цепи целесообразно рассчитать операторную передаточную функцию цепи К(р), т. е. передаточную функцию в зависимости от обобщенной частоты p=α+jω (в нашем случае α=0, т.е. p=jω). Для ее расчета воспользуемся методом контурных токов.

Заменим схему на рис. 1 следующей эквивалентной схемой:

Рис. 2. Эквивалентная схема заданной цепи

Здесь

 

Uвых = I3R  необходимо найти ток I3.

Найдём из этой системы ток I3 методом Крамера:

;

;

;

;

.

Введём обозначения:

, , .

1.2 Расчет комплексного частотного коэффициента передачи

, , ;

,

.

1.3 Расчет амплитудно-частотной характеристики цепи (АЧХ)

АЧХ цепи получается путем нахождения модуля комплексного частотного коэффициента передачи.

K(ω)=|K()|

После проведенных преобразований, получаем:

,   

где  

,

,

.

График АЧХ, построенный  с помощью программы MathCad, представлен на рисунке 3.

Найдём значения АЧХ в некоторых точках:

Из графика АЧХ (рис. 3) найдём полосу пропускания - интервал частот, в пределах которого модуль передаточной характеристики не меньше своего максимального значения, деленного на .

,

Из последнего равенства видно, что модуль передаточной характеристики |K(jw)| с ростом частоты w увеличивается и принимает наибольшее значение при   w = рад/с.

При этом |K(j∞)| = Kmax = 1.

Из графика при ω=0,515·105  рад/c  или  при  f=8,2кГц.          Таким образом, полосой пропускания является интервал: ( ∞)

                                                                                          (8,2 кГц; ∞)

Таблица значений K(ω):

ω, рад/c

0

25000

50000

100000

150000

200000

250000

350000

2000000

K(ω)

0

0,427

0,697

0,89

0,947

0,969

0,98

0,99

1

Рис. 3. Амплитудно-частотная характеристика цепи

1.4 Расчет фазо-частотной характеристики цепи (ФЧХ)

ФЧХ получается путем нахождения аргумента (фазы) комплексного частотного коэффициента передачи:

φ(ω)=arg(K(jω));

, где  , , .

График ФЧХ, построенный  с помощью программы MathCad, представлен на рисунке 4.

Таблица значений φ(ω):

ω

0,1

2000

4050

10000

22350

22360

22370

40000

80000

150000

2000000

φ(ω)

-1,571

-0,654

0

0,896

1,57

0

-1,571

-1,137

-0,682

-0,388

0

Рис. 4. Фазо-частотная характеристика цепи

  1.  Расчет переходной характеристики цепи

Переходная характеристика цепи – реакция цепи a(t) на воздействие единичного скачка σ(t).

Для нахождения переходной характеристики операторная передаточная функция умножается на изображение по Лапласу единичного входного скачка . В результате получаем изображение переходной характеристики . Для нахождения оригинала  нужно представить в виде суперпозиции табличных функций, например, разложив на простые дроби:

- корни уравнения  .

находятся методом неопределенных коэффициентов.

Переходный процесс носит апериодический характер, если корни знаменателя действительные. При наличии комплексно-сопряженных корней переходный процесс имеет характер затухающих колебаний. Если корни мнимые, колебания будут незатухающими.

;

;

Разложим эту дробь на простейшие дроби:  ;

Найдём корни знаменателя. Для этого воспользуемся программой MathCad.

;

Данное уравнение имеет следующие корни:

,

,

.

Так как корни знаменателя действительные, переходный процесс носит апериодический характер.

Теперь необходимо найти коэффициенты A. Для их нахождения воспользуемся методом неопределенных коэффициентов.

Поочередно приравняем p к p1, p2, p3.

:   ,

:   ,

:   ,

Таким образом, .

Используя , найдём переходную характеристику a(t):

График переходной характеристики a(t) представлен на рисунке 5.

Рис. 5. Переходная характеристика цепи

  1.  Нахождение спектра входного сигнала

Входным воздействием цепи является периодическая последовательность прямоугольных импульсов с амплитудой E = 5 В, длительностью импульса τ = 1 мс и периодом Т = 10 мс:

Рис. 6. График входного воздействия.

Спектр входного сигнала представляется разложением функции U(t) в ряд Фурье:

,

где  - амплитуда n-ой гармоники,

- фаза n-ой гармоники,

- основная частота,       - частота n-ой гармоники.

Коэффициенты ряда Фурье определяются по следующим формулам:

,

,

.

;

,

;

,

;

;

- амплитудный спектр входного сигнала,

- фазовый спектр входного сигнала.

Составим таблицу гармоник амплитудного Uin(n) и фазового φin(n) спектров входного сигнала (табл.1).

Таблица 1

Амплитудный спектр Uin(n) входного сигнала изображён на рис. 7,

фазовый φin(n) спектр входного сигнала изображён на рис. 8.

Рис. 7. Амплитудный спектр входного сигнала

Рис. 8. Фазовый спектр входного сигнала

  1.  Нахождение спектра выходного сигнала

Амплитудный и фазовый спектры выходного сигнала находятся, зная амплитудный и фазовый спектры входного сигнала и частотный коэффициент передачи, по следующим формулам:

,

.

Составим таблицу гармоник амплитудного Uout(n) и фазового φout(n) спектров вsходного сигнала (табл.2).

Таблица 2

Амплитудный спектр Uout(n) входного сигнала изображён на рис. 9,

фазовый φout(n) спектр вsходного сигнала изображён на рис. 10.

Рис. 9. Амплитудный спектр выходного сигнала

Рис. 10. Фазовый спектр выходного сигнала

Заключение

В результате проделанной работы техническое задание на курсовую работу было выполнено. В ходе работы были рассчитаны статические характеристики заданной электрической цепи – АЧХ (см. пункт 1.3) и ФЧХ (см. пункт 1.4), а также динамическая характеристика – переходная (см. пункт 2). На основании статических характеристик и данных о входном воздействии были получены амплитудные и фазовые спектры входного (см. пункт 3) и выходного сигналов (см. пункт 4).

Так как, частотный коэффициент передачи не зависит от времени, то заданная электрическая цепь является стационарной системой. Данная система (рис. 1) также является линейной, т.к. состоит исключительно из линейных элементов (резисторы, конденсаторы) и не может вносить нелинейные искажения.

По форме АЧХ можно судить о том, какую функцию выполняет цепь. Заданная цепь является фильтром верхних частот с граничной частотой wгр = 51500 рад/с (fгр = 8200 Гц). Таким образом её полоса пропускания П = (51500; ∞) рад/с или П = (8200; ∞) Гц.

Нахождение спектра входного сигнала основано на разложении его в ряд Фурье (см. пункт 3). При построении спектра входного сигнала (амплитудного и фазового) по оси абсцисс откладывались номера гармоник n, а также была составлена таблица соответствующих им частот w, рад/с (табл.1). Это делалось для удобства сравнения с графиками АЧХ и ФЧХ.

Нахождение амплитудного спектра выходного сигнала основано на перемножении величины каждой из гармоник на соответствующее значение АЧХ.

Фазовый спектр выходного сигнала получается алгебраическим суммированием фаз гармонических составляющих сигнала на входе и значений фазовой характеристики на частотах гармоник

Данная схема (рис.1) может использоваться в аудиотехнике как фильтр верхних частот.

Для проверки правильности проведенных расчетов было проведено моделирование заданной схемы в программе Multisim (рис. 1, см. Приложение). Как видно на рисунке 2 и 3 в Приложении графики АЧХ и переходной характеристики совпадают с графиками, построенными по аналитически полученным формулам. Это говорит о том, что расчеты были проведены верно.

Список литературы

  1.   Хворенков В. В., Козлова М. В., Трефилова Т. Ю. Методические указания к курсовой работе по дисциплине «Радиотехнические цепи и сигналы» для студентов 3-го курса специальности 200700 очной формы обучения. Ижевск: Изд-во ИжГТУ,  2002. - 20 с.
  2.  Курс лекций по дисциплине РТЦиС.
  3.  Д. Письменный. Конспект лекций по высшей математике. Полный курс. Москва: Айрис-Пресс,  2007. - 608 с.
  4.  Курс лекций по дисциплине ОТЦ.
  5.  Mathcad Help.

Приложение

Проверка результатов расчета с помощью моделирования электрической схемы в программе Multisim

Рис. 1. Схема заданной цепи, собранная в программе Multisim

Рис. 2. АЧХ цепи

Для построения переходной характеристики на вход схемы подключим генератор прямоугольных импульсов с амплитудой 1В, а выходное воздействие будем снимать с осциллографа. На экране осциллографа видим следующее:

Рис. 3. Переходная характеристика цепи

PAGE   \* MERGEFORMAT 9


             
E,  0 < t < τ,

U(t) =

             0,   τ < t < T.


 

А также другие работы, которые могут Вас заинтересовать

50241. Принципы построения бухгалтерского финансового учета 80.5 KB
  Информация, которая формируется в системе бухгалтерского учета хозяйствующих субъектов, должна отвечать требованиям всех заинтересованных пользователей. В зависимости от круга интересов различных групп пользователей информацией в системе бухгалтерского учета можно выделить взаимосвязанные подсистемы
50242. ЭЛЕКТРОИСКРОВОЕ ЛЕГИРОВАНИЕ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ 411 KB
  Этот способ имеет следующие специфические свойства: материал анода легирующий материал может образовывать на поверхности катода легируемая поверхность прочно сцепленный с ней слой покрытия. В этом случае между материалом основы и покрытием существует промежуточный слой в котором протекают диффузионные процессы элементов катода и анода; процесс легирования может происходить так что материал анода не образует покрытия на поверхности катода а диффузно обогащает ее своими составляющими элементами; легирование можно проводить...
50243. ОПРЕДЕЛЕНИЕ МОМЕНТОВ ИНЕРЦИИ ТЕЛ МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ 183.5 KB
  Инертные свойства тела при вращении определяются не только массой тела, но и расположением отдельных частей тела по отношению к оси вращения. Для характеристики этих свойств вводится понятие момента инерции.
50245. Понятие отчета в СУБД Access и его основных элементов 117 KB
  Понятие отчета в СУБД ccess и его основных элементов Отчеты представляют собой наилучшее средство представления информации из базы данных в виде печатного документа. Основные сведения об отчетах Рис.1 Вид окна Новый отчет Для создания отчета в окне базы данных выбираем пункт Отчет в раскрывающемся списке кнопки Новый объект на панели инструментов или кнопку Создать на вкладке Отчеты . Мастер отчетов запускает основного мастера для создания отчетов позволяющего выбрать поля для отчета задать форматы условия группировки и итоговые...
50246. Пояснить создание и настройку отчета в режиме конструктора СУБД Access 22.5 KB
  Настройка отчетов Чтобы изменить размер выделенного элемента управления можно воспользоваться маркерами изменения размера находящимися на сторонах в нижних углах и в правом верхнем углу. Для перемещения невыделенного элемента управления используйте указатель мыши. Если элемент управления имеет присоединенную надпись она перемещается вместе с ним. перемещать элемент управления и присоединенную надпись можно независимо друг от друга с помощью маркеров перемещения расположенных в левых верхних углах элемента управления и надписи.
50247. Визначення енергії дисоціації молекул йоду 896.5 KB
  Лабораторна установка для вивчення спектрів поглинання розчинів йоду зібрана на базі монохроматора УМ–2 який використовується як спектроскоп. 3 виділені оптичні елементи що входять до складу монохроматора. 2 сфокусоване конденсорною лінзою 3 світло проходить через досліджуваний розчин 4 і потрапляє на вхідну щілину 6 монохроматора. Градуювання монохроматора Для цього потрібно див.
50248. СНЯТИЕ КРИВОЙ НАМАГНИЧИВАНИЯ И ПЕТЛИ ГИСТЕРЕЗИСА ФЕРРОМАГНИТНЫХ ВЕЩЕСТВ С ПОМОЩЬЮ ОСЦИЛЛОГРАФА 881.5 KB
  Классический расчет для круговой орбиты дает где eзаряд электрона;  его линейная скорость; rрадиус орбиты. Если для данного вещества экспериментально получить зависимость J=JH которая одинакова для образцов любой формы и размеров и рассчитать по формуле 2 H то на основании уравнения 1 можно найти индукцию магнитного поля в веществе. Экспериментально наиболее просто J=JH определяется для образца в виде тороида на который равномерно нанесены витки провода. 3...
50249. ОПРЕДЕЛЕНИЕ ЭЛЕКТРИЧЕСКОЙ ЕМКОСТИ КОНДЕНСАТОРА 265 KB
  Цель работы: Определение электроемкостей отдельных конденсаторов и двух батарей из последовательно и параллельно соединенных конденсаторов. Емкость конденсатора определяется с помощью соотношения: C= где q абсолютная величина заряда на одной из обкладок конденсатора; U ...