4312

Структуры как способы предоставления данных

Контрольная

Информатика, кибернетика и программирование

Структуры Успех программы часто зависит от удачного выбора способа представления данных. С помощью структур возможно моделировать сложные объекты, возникающие при решении задач. Структуры представляют средство для доступа к з...

Русский

2012-11-16

52 KB

2 чел.

Структуры

Успех программы часто зависит от удачного выбора способа представления данных. С помощью структур возможно моделировать сложные объекты, возникающие  при  решении  задач.  Структуры представляют средство для доступа к записям, которые содержат поля одного или нескольких типов.

Для использования структуры необходимо:

1. установить шаблон для структуры

2. объявить переменную, соответствующую этому шаблону

3. осуществить доступ к компонентам структуры.

Шаблон структуры

Шаблон - это схема, описывающая содержание структуры. Установка структурного шаблона телефонный справочник:

 struct sprav       {

    char fio[20];

    long num;

   };

Данный шаблон описывает структуру с именем типа структуры sprav, состоящую из двух компонентов: строки fio и целой переменной num типа long.

Имя типа структуры sprav необязательно и используется для ссылки на эту структуру.

Компоненты структуры - данные любого типа, включая и другие структуры. Имя внутри структуры может быть таким же, как имя объекта вне структуры.

Если шаблон описан внутри функции - он доступен только этой функции, если шаблон описан вне функции - он доступен любой функции программы.

Установка шаблона не вызывает никаких действий в программе.

Структурные переменные

Объявление структурных переменных приводит к выделению памяти для компонент структуры, куда можно записать данные или откуда можно прочитать их. Для объявления структурных переменных имеются несколько способов.

  1.  Установить структурный шаблон:

        struct sprav    {

    char fio[20];

    long num;

                       };

Объявить простую переменную, массив структур, указатель на структуру:

 struct sprav tel1, tel2[5], *tel3;

2. Установить структурный шаблон с помощью макроопределения:  #define SPRAV struct sprav

 SPRAV      {

  char fio[20];

  long num;

             };

Объявить переменные:

 SPRAV sp1, sp2[6], *sp3;

3. Объявить переменные одновременно с установкой шаблона (если на данную структуру вы больше не ссылаетесь):

 struct     {

  char fio[20];

  long num;

  }  tel1, tel2[3], *tel3;

4. Ввести новый тип данных (TEL) - структура определенного вида:  typedef struct       {

    char fio[20];

    long num;

    }  TEL;

Объявить переменные нового типа:

 TEL tel1, tel2[6], *tel3;

Если программа достаточно объемна, представляется более удобным четвертый способ.

Инициализация структуры

Инициализировать можно только внешние или статические структуры.

 static struct    {

    char fio[20];

    long num;

  }  tel[2]=      {

      "Иванов Ф.А.", 456756,

      "Петров В.П.", 632345

     } ;

  Доступ к компонентам структуры

Доступ к компонентам структуры продемонстрируем с помощью примеров.

Пример 1.

/* Обращение к элементам структуры через имя переменной */

#include <stdio.h>

#include <conio.h>

void main(void)

 {

struct      {

  char fio[20];  /* фамилия */

                       long num; /* телефон */

             }

  tel1, tel2;

clrscr();

puts("введите фио абонента-");

gets(tel1.fio);

puts("введите его номер-");

scanf("%ld",&tel1.num);

tel2=tel1;  /* нельзя так же сравнивать структуры */

puts("Введено:");

printf("Фамилия :%s   номер: %ld\n",tel2.fio,tel2.num);

  }

Пример 2.

/* Динамическое выделение памяти для структуры */

/* Обращение к элементам структуры через указатель */

#include <stdio.h>

#include <conio.h>

#include <alloc.h>

struct sprav    {

   char fio[20];

   long num;

        };

void main(void)

 {

struct sprav *tel1, *tel2;

clrscr();

/* Выделение памяти для структуры */

tel1=(struct sprav *)malloc(sizeof(struct sprav));

tel2=(struct sprav *)malloc(sizeof(struct sprav));

puts("введите фио абонента-");

gets(tel1->fio);

puts("введите его номер-");

scanf("%ld",&tel1->num);

*tel2= *tel1;

puts("Введено:");

printf("Фамилия :%s номер: %ld\n",(*tel2).fio,(*tel2).num);

  }

 

Массив структур

Пример 3.

/* Массив структур. Обращение к элементам структуры через

имя элемента массива */

#include <stdio.h>

#include <conio.h>

#include <string.h>

#define SPRAV struct sprav

void main(void)

{

SPRAV {

char fio[20];

long num;

             };

SPRAV tel[5]; /* массив структур - 5 элементов */

char fio_tek[20];

int i;

clrscr();

/* ввод данных в массив структур */

for(i=0; i<5; i++)

{

puts("введите фио абонента-");

gets(tel[i].fio);

puts("введите его номер-");

scanf("%ld",&tel[i].num);

getchar();

}

puts("Выбор телефона по фамилии");

gets(fio_tek);

/* поиск структуры по фамилии абонента */

for(i=0; i<5; i++)

if(!strcmp(fio_tek,tel[i].fio)) break;

if(i!=5) /* цикл закончен по break */

printf("номер абонента %s равен %ld\n",fio_tek, tel[i].num);

else /* цикл выполнился полностью */

puts("Абонент не найден");

 }

Пример 4.

/* Массив структур. Память выделяется динамически. */

/* Обращение к элементам структуры через указатель */

#include <stdio.h>

#include <conio.h>

#include <string.h>

#include <alloc.h>

typedef struct  {

char fio[20];

long num;

                         } TEL;

void main(void)

 {

TEL *tel;

char fio_tek[20];

int i;

clrscr();

/* Выделение памяти для массива - 3 элемента */

tel=(TEL *)malloc(sizeof(TEL)*3);

for(i=0; i<3; i++)

{

puts("введите фио абонента-");

gets((tel+i)->fio);

puts("введите его номер-");

scanf("%ld",&(tel+i)->num);

getchar();

 }

puts("Выбор телефона по фамилии");

gets(fio_tek);

for(i=0; i<5; i++,tel++)

if(!strcmp(fio_tek,tel->fio)) break;

if(i!=5)

printf("номер абонента %s равен %ld\n",fio_tek, tel->num);

else

puts("Абонент не найден");

 }

  Передача структуры в функцию

Непосредственный доступ к компонентам структуры - плохой стиль программирования. Все операции, которые разрешены применительно к структуре, должны быть при этом реализованы в виде отдельных функций. Не все компиляторы языка Си позволяют передавать структуры в функцию по значению, поэтому в примерах передача структуры идет через указатель.

Пример 5.

/* Передача структуры в функцию через указатель на структуру. Определение комплексного числа через структуру и действия  над комплексными числами ( ввод, вывод, вычисление суммы) */

#include <stdio.h>

typedef struct  {

                            float a;   /* действительная часть */

                            float b;   /* мнимая часть */

                          } COMPLEX;

void vvod(COMPLEX *,float,float);

void sum(COMPLEX *,COMPLEX *,COMPLEX *);

void out(COMPLEX *);

void main(void)

 {

COMPLEX x,y,z;

vvod(&x,2.5,6.7);

vvod(&y,6.89,8.45);

puts("Введены числа:");

out(&x);

out(&y);

sum(&x,&y,&z);

puts("Сумма комплексных чисел равна:");

out(&z);

 }

/* Вывод комплексного числа */

void out( COMPLEX *p)

 {

printf("(%.2f,%.2f)\n", (*p).a,(*p).b);

return;

 }

/* Вычисление суммы двух комплексных чисел */

void sum(COMPLEX *p1,COMPLEX *p2,COMPLEX *p3)

 {

(*p3).a=(*p1).a+(*p2).a;

(*p3).b=(*p1).b+(*p2).b;

return;

 }

/* Ввод значений для элементов структуры */

void vvod(COMPLEX *p,float a, float b)

 {

p->a=a;

p->b=b;

return;

 }

Вложенные структуры

Структура, являющаяся компонентом другой структуры, называется вложенной.

Пример 6.

/* Даны четыре точки - центры четырех окружностей.

Заполнить структуру окружность, если все окружности проходят через начало координат.

*/

#include<conio.h>

#include<stdio.h>

#include<math.h>

#include<stdlib.h>

struct POINT   {

float x;

float y;

      };

struct CIRCLE  {

struct POINT point; /* вложенная структура */

double r;

                      circle[2],

                          } *p;

void main (void)

 {

int i,j;

float a,b,c,d;

clrscr();

gotoxy(17,1);

cputs("ВВЕДИТЕ КООРДИНАТЫ ТОЧЕК :\r\n");

for(i=0;i<2;i++)

 {

cprintf ("\n\n ВВЕДИТЕ X: ");

cprintf ("X[%d]= ",i+1);  

    cscanf("%f",&circle[i].point.x);

cprintf ("\n ВВЕДИТЕ Y: ");

cprintf ("Y[%d]= ",i+1);

cscanf ("%f",&circle[i].point.y);

}

p=circle;

gotoxy(17,12);

cputs("РЕЗУЛЬТАТ:\r\n\n");

for(i=0;i<2;i++)

{

a=p->point.x;

b=p->point.y;

c=sqrt(a*a+b*b);

p->r=c;

cprintf("\nРАДИУС : %lf , ЦЕНТР (%f,%f)\r\n",p->r,a,b);  

      p++;

 }

 }


 

А также другие работы, которые могут Вас заинтересовать

10608. Электроэрозионная обработка материалов. Теория электротепловых процессов 79.5 KB
  Электроэрозионная обработка материалов. Теория электротепловых процессов Производительность и точность электроискровой обработки чистота обработанной поверхности определяются многими факторами. Важнейшими из них являются параметры электрической схемы обуслов
10609. Особенности цифрового управления процессами 196.25 KB
  Исторический обзор. Понятие системы. Особенности цифрового управления процессами Первый пример практического применения управляющей ЭВМ относится к 1959 году он связан с работой нефтехимического завода компании Texaco в городе Порт Артур штат Техас. Компания Texaco выпо...
10610. Управление на основе последовательного программирования. Управление на основе прерываний. Управление последовательностью событий и бинарное управление 480.38 KB
  Управление на основе последовательного программирования. Управление на основе прерываний. Управление последовательностью событий и бинарное управление Попытаемся проанализировать следующую проблему: могут ли задачи управления в реальном времени решаться с помощь...
10611. Генерация опорного значения. Системы, содержащие несколько контуров управления 107.1 KB
  Генерация опорного значения. Системы содержащие несколько контуров управления. Взаимосвязанные системы. Критичные по времени процессы. Сбор данных измерений и обработка сигналов. Топология информационных потоков. Интерфейс оператора. Системная интеграция и надежность...
10612. Модели, применяемые в управлении. Типы моделей. Масштаб времени динамических моделей 234.16 KB
  Модели применяемые в управлении. Типы моделей. Масштаб времени динамических моделей. Непрерывные модели динамических систем. Уравнения состояния. Нелинейные системы. Численное моделирование динамических систем. Проблема слишком большого шага. Дискретные модели динам
10613. Компоненты интерфейса между процессом и управляющим компьютером. Датчики. Исполнительные устройства. Бинарные и цифровые датчики 195.59 KB
  Компоненты интерфейса между процессом и управляющим компьютером. Датчики. Исполнительные устройства. Бинарные и цифровые датчики. Обработка сигналов. Дискретизация сигналов. Преобразование аналоговых и цифровых сигналов. Обработка измерительной информации. Аналог...
10614. Аналоговые (непрерывные) и дискретные регуляторы. Дискретная модель ПИД-регулятора 225.4 KB
  Аналоговые непрерывные и дискретные регуляторы. Дискретная модель ПИДрегулятора. Позиционный алгоритм. Определение частоты выборки в системах управления. Предотвращение интегрального насыщения. Регуляторы можно строить на основе как аналоговой так и цифровой те...
10615. Комбинационное и последовательностное управление. Управление на основе переключательных схем 73.32 KB
  Комбинационное и последовательностное управление. Управление на основе переключательных схем. Аппаратные и программные средства. Программируемые логические контроллеры. Эта глава посвящена бинарному комбинационному и последовательностному т. е. управление порядк...
10616. Шина VMEbus. Другие стандарты шин 61.46 KB
  Шина VMEbus. Другие стандарты шин Аббревиатура VME означает VERSA Module Eurocard. Соответственно VERSA это название более ранней версии шины разработанной компанией Моторола для процессора серии 68000 а платы Eurocard это стандарт формата плат раздел 8.2.2. Шина VMEbus была разработана г