43224

Расчет транспортирующего конвейера

Курсовая

Производство и промышленные технологии

Определяем диаметр винта D конвейера. Диаметр винта определяем из формулы производительности. S шаг винта м; nчастота вращения вала винта об. мин; y коэффициент наполнения желоба винта.

Русский

2013-11-06

98 KB

9 чел.

  1.  Данные для расчета.
    1.  Производительность Q = 5 т/ч.
    2.  Длина трассы транспортирования L = 6 м.
    3.  Высота транспортирования H = 1 м.
    4.  Угол наклона транспортирующей машины (ТМ) j = 100 
    5.   Класс использования ТМ по времени В3.
    6.  Класс использования ТМ по производительности П3.
    7.  Место установки - открытая площадка.
    8.  Транспортируемый материал – песок сухой.
      1.  Насыпная плотность r = 1400…1600 кг/м3.

Принимаем r =1600 кг/м3.

  1.  Объемная масса  g = 1,44 т/м3
    1.  Коэффициент внутреннего трения f = 1,15
      1.   Степень абразивности - С.
      2.  Крупность – мелкозернистый d зерен= 0,5…3 мм.
      3.  Подвижность частиц – средняя.

    Данные из источника 8.

1.9   Схема  конвейера (рис.1):

                  1       9         2     3           4                  5       6              7           8    

                                                         рис.1

  1.  Электродвигатель, 2-Редуктор, 3-Загрузочное устройство, 4-Главная опора, 5-Корпус конвейера, 6-Шнек, 7-Разгрузочное устройство, 8- Концевая опора, 9-Муфты сцепления.

  1.  Расчет.

2.1. Определяем диаметр винта (D) конвейера.

  Диаметр винта определяем из формулы производительности. Формулу берем из источника 6:

                      Q = 60 (pD2/4)* S* n* C* r* y,

где r- насыпная плотность груза (см. пункт 1.8.1.),т/м3; С - поправочный коэффициент, зависящий от угла наклона конвейера: при угле наклона равном j = 100, С=0,8 [8 стр. 354], S- шаг винта, м; n-частота вращения вала винта, об./мин; y- коэффициент наполнения желоба винта.

   Тогда при производительности Q=5 т/ч получаем:

                                5 = 47 D2 * S* n* y* 1,6* 0,8

                                    D2 * S* n* y = 8,311*10-2

2.2. Коэффициент наполнения  y,  во избежание скопления груза у промежуточных подшипников принимают относительно небольшим, он зависит от свойств насыпного груза: y =0,3   [1];

2.3. Шаг винта (S) шнека для сравнительно легко перемещаемых грузов принимаем равным: S=0,8 D [4 стр. 267]

2.4. Максимальную частоту вращения n, об/мин, выбирают в зависимости от рода перемещаемого груза и диаметра винта. Она должна обеспечивать спокойное, без пересыпания через вал, продвижение груза. Частоту вращения определяем по формуле:

                                      n max = A/    D,

где, А - эмпирический коэффициент, зависящий от свойств материала: А=30 [8 табл.12.1 стр.354].

2.5. Значение диаметра, выбирают ориентировочно и проверяют по ГОСТу. Окончательно  его  назначают    с  учетом   ряда  диаметров  по  ГОСТ 2037-84.

     С учетом всех преобразований получаем:

                                                D2, 5 = 0,1   

     Отсюда диаметр равен:     D=0,168 м.

     Стандартный ближайший диаметр по ГОСТу это – D=0,160м.

Тогда получаем: шаг винта равен S=0,13м; 

                            частота вращения вала винта n=30/12,65=75 об/мин.

2.6. Проверка производительности винтового конвейера по полученным результатам:

              QРасчетное =47*0,162*0,13*0,3*75*0,8*1,6= 4,5 т/ч                    

Определим  расхождение расчетной и заданной производительности:

            Q = (Qрасчетное  Qпотребное )/ Qпотребное =0,1 или 10% ,

что допускается.

2.8. Определяем диаметр вала винта d винта по формуле в 4 источнике стр. 267

                                                d винта=35+0,1 D= 35+0,1*160=51мм.

2.9. Определяем скорость транспортирования материала V,м/с:

                                V=S*n/60= 0,13*75/60=1,625 м/с.

3.  Мощность.

  1.  Определяем потребную мощность привода P пот по формуле [4 стр. 272]

                                  Pпот=Q (w’ *Lг+H) g/3600+D*Lг/20,

где w’-коэффициент сопротивления [4 стр. 13] w’=4,00; g-ускорение свободного падения; L гор - горизонтальная проекция длины транспортирования винтового конвейера: Lг=L* cos=6* cos 100=5,9 м;

                Pпот=4,5 (4*5,9+1,0) 9,81/3600+ 0,16*5,9/20=0,29 кВт.

3.2.   Определяем мощность на валу винта Pв по формуле:

          Pв=Qрасчетная L (w’+ sin)/367=4,5*6(4+0,1736)/367=0,307 кВт.

4. Выбор оборудования обеспечивающего требуемые параметры.

  1.  Производим подбор двигателя по источнику 4:

  Двигатель выбираем типа 4А с фазным ротором (рис.2). Применение таких двигателей обусловлено относительно равномерной загруженностью всех парциальных приводов одинаковой или неодинаковой номинальной мощностью. Возможно, использовать четыре исполнения двигателей:

Тип двигателя   

P, кВт

   n, об/мин

КПД,                    %

Cos

МпускМном

Ммах

Мном

4А63B4У3

0,37

 1365

  68

 0,69

 2,0

  2,2  

4А71A6У3

0,37

  910

 64,5

 0,69

 2,0

  2,2

4А80A8У3

0,37

  675

 61,5

 0,65

 1,6

  1,7

  Синхронная частота вращения 3000 об./мин. В выборе не участвует так как, максимальная частота вращения быстроходного вала редуктора РЧУ

равна 1500 об./мин.

  1.  Определение общего передаточного числа привода.
    1.   Определение передаточного числа привода при использовании выбранных двигателей

U1365=nэд./nвала=1365/75=18,20

U910=12,13

U675=9

    Из ряда редукторов РЧУ имеются с U=10, U=25, U=50 и т.д.

Определяем расхождение передаточного отношения у редукторов

U1=((U1365- Uстандарт)/ Uстандарт)*100%=((18,20-25)/25)*100%= -27,2%

U2=((12,13-10)/10)*100%=21,3%

 U3=((9-10)/10)*100%=10%

4.1.3 Эскиз двигателя (рис.3)

  1.  Выбор передачи мощности.

4.2.1 Определение Tкр на валу винта:

                                         Ткр=PB/(kзапаса*)

 где kзапасакоэффициент запаса принимается 1,8…2,0 принимаем kзапаса =1,8; -угловая скорость вращения вала винта:              

                         =2n/60= 2*75*3,14/60=7,85 рад/сек.

                            Ткр=0,29/1,8*7,85=0,02 кНм или 20 Нм.

Редуктор выбираем по источнику 1 стр. 645-655:

 Редуктор имеет следующие параметры: U=10 допускаемый Ткр=31 Нм при непрерывном режиме работы. Другие виды редукторов при данном передаточном отношении допускают слишком большие моменты, что нецелесообразно по ценовым факторам. А редукторы с допускаемым передаточным отношением имеют слишком маленькие передаточные отношения.

  1.  Эскиз редуктора (рис.4).
    1.  Эскизы валов

Рис.5 на быстроходный вал

 

Рис.6 на тихоходный вал

  1.  Выбор муфт
    1.  Муфта на быстроходный вал выбираем МУВП по ГОСТ 21424-75 по источнику 4 : Муфта 63-22-1-16-3-О2

Муфта МУВП номинальный крутящий момент 63 Нм

Посадочный диаметр на вал редуктора  22мм. Исполнение 1

Посадочный диаметр на вал двигателя   16мм. Исполнение 3

Общеклиматическое исполнение

  1.  Эскиз муфты рис.7
    1.  Муфта на тихоходный вал цепная по ГОСТ 5006-83
      1.  Эскиз муфты рис.8
    2.  Выбор тормозного устройства:

На винтовой конвейер не целесообразно применение тормозного устройства из-за того, что имеется возможность самоторможения.             

  1.  Проверочный расчет
    1.  Расчет вала винта  
    2.  Расчетная схема рис.9

  1.  Определение нагрузок действующих на вал винта

                               Fос=2Tкр/(k*Dtg(+)),

где k- коэффициент, учитывающий неравномерность распределения материала по винту. Принимают равным от 0,7 до 0,8. Принимаем k=0,8;

tg=f1- коэффициент внешнего трения по металлу трения; tg=0,48; =260  

                                 Foc=2*20/(0,8*0,16*tg(26+10))=430,12 Hм

                                Ft=2Tкр/D=2*20/0,16=250 Нм

                                Fr= Ft tg=250*0,48=120 Hм

                               FM=0,5T/R=0,5*20/1,5*0,16=41,667 Hм

Т.к. муфта на тихоходный вал цепная значит R=1,5D

  1.  Определение реакций в плоскости ОХZ

 МА=0

        RBX=(FM (l-l1)- Ft (l1-l2))/l1=(41,667*3,0- 250*1,5)/3,0= -83,33 H

 МB=0

       RAX =(FM l- Ft l2)/l1=(41,667*6- 250*1,5)/3,0= -41,667 H

  1.  Определение реакций в плоскости OYZ

 МА=0

                   RBY=(Fr(l1 –l2)- Gг(l1- l2))/l2 ,

где Gг- горизонтальная проекция веса материала передаваемого по винту

При определении веса материала, находящегося в шнеке, пользуемся формулой из источника 3:  G=(/4)(D2-dвала2)L0*н;

где  0-вес единицы объема транспортируемого материала: принимаем 0=0,147 т/м3 согласно источнику 3; н-коэффициент наполнения объема шнека;

                    G=(3,14/4)(0,162-0,0512) 6*0,147*0,3=0,00478 кH=4,78 H

                                   Gг=G* cos =4,78*cos100 =4,707

                              RBY=(120*1,5- 4,707*1,5)/3,0=57,65 H

 МB=0

                RAY =(Fr l2- Gг l2)/l1=(120*1,5- 4,707*1,5)/3,0=57,65 H

  1.  Построение эпюр напряжений рис. 10
    1.  Расчет вала на выносливость

      FA=4(Foc + GB)/D2=4(430,12+ 4,78*sin)/3,14*0,162=2,14*104

      u =T / Woc=     Mxz2+ Myz2/0,1D3=3,71*105

     max=u+FA=3,93*105   H

     min=-u+FA= -3,496*105  H

      a=w=max/2=T/2WP=2,44*104  H; Wp=0,2D3 

Определим коэффициент запаса для вала винта

                    S=(S*S)/       S2+S2     [S]=1,5…2,0

                        S=-1/(k*a/(Mп)+*M),

                      S=-1/(k*a/(Mп)+*M),

где -1, -1-приделы выносливости материала; k, k-коэффициенты концентрации напряжений; M- коэффициент учитывающий масштабный фактор; п- коэффициент учитывающий поверхностный фактор;  , - коэффициентs учитывающие ассиметрию цикла изменения напряжений; - коэффициент учитывающий упрочнение поверхности.

Все эти коэффициенты приняли согласно справочной литературе для марки материала винта.

Материал         винта

  -1 , МПа

-1 ,   МПа

Т , МПа

Т ,    МПа

    HB

Сталь 45

    350

     210

    300

    550

200…240

M=0,75; п=0,85;  = 0,1; =0,05; k=1; k=1; =1.

                           a=(max +min)/2=2,17*104

                          m=(max +min)/2=3,71*105

             S=350*106/(2,17*104/(0,75*0,85)+0,1*3,71*105)=4919,9   

       S=210*106/(2,44*104/(0,75*0,85)+0,005*2,44*104)=5469,25

                  S=(4919,9* 5469,25 )/           4919,9 2+5469,252   =36,57>[S]

Вывод: выносливость вала обеспечена.

  1.  Расчет вала на статическую прочность.

 SТ=Т/max =550*106/3,93*105=1399,49

 SТ =Т /max=300*106/2*2,44*104=6147,54

ST=(1399,49*6147,54 )/             1399,492+6147,542     =13,64>[ST]=1,5…2,0

Вывод: статическая прочность вала обеспечена.

  1.  Расчет подшипника на валу винта

    На валу винта, в концевой опоре, установлен подшипник роликовый - упорный под диаметр 45  №2007108А

  1.  Расчет подшипника на долговечность.

В основе расчета лежит экспериментальная зависимость:

                            L=(C/F)  , млн/об,

где, L-долговечность подшипника в миллионах оборотов; С - динамическая грузоподъемность (задается в каталоге) [Ист.1 стр. 176]

С=49500 H; F-приведенная нагрузка на подшипник; - показатель степени (для роликовых =3,33) e=1,314- коэффициент зависящий от типа подшипника.

Нахождение приведенной нагрузки на подшипник

          R =       Rax2 + Ray2  =        41,6672+57,652   =71,13

 При вращении внутреннего кольца kk=1,0

 Проверим условие: Foc/(R*kk)e

                 430,12/(71,13*1)=6.046>e=1,314

Значит, приведенная нагрузка на подшипник равна: 

 F=(XR* kk +Y* Foc) kb *kT  =(1,2*71,13+430,12*0,85) 1,1*1=496,05

               Данные по коэффициентам взяты из 5-го источника

                       L=(49500/496,05 )3,33=4538742,567

LH=L*106/60*n=4538742,567*106/60*60=1,261*109 часов

  1.  Расчет подшипника скольжения

Определим V –окружную скорость на шейке вала, по формуле:

                         V=( dp n)/60*1000,

где dp- диаметр подшипника; n- частота вращения шпинделя, мин-1  

                                           V=(3,14*45*60)/60000=0,14 м/с.

        Удельная нагрузка на подшипник МПа.

                                P=100F/dplp [P]=2-10 МПа 

                    

                  R=       Rвx2 + Rвy2  =        83,33 2+57,652   =101,328 

Так как действует осевая сила значит формула определения приведенной нагрузки на подшипник такая – же как и в предыдущем случае:

       F=(XR* kk +Y* Foc) kb kT  =(0,9*101,328+0,85*430,12) 1,1*1=502,477

                               P=100*502,477/55*75=7,08 < [P]

                                       

                                        PV [PV]=4-10 Мпа м/с

                                   7,08*0,14=0,99 < [PV]

Ссылка на расчет в источнике 1. том 2. Стр.32

Вывод: Все условия соблюдены.

 

     Список использованной литературы:

  1.  Анурьев В.И. Справочник - Машиностроителя” в 3-х томах. т. 3 – 7-е изд., перераб. и доп. – М.: Машиностроение., 82.
  2.  Волков Р.А. Конвейеры: Справочник/ Под общей редакцией Ю.А. Пертена. Л.: Машиностроение, Ленинградское отд-ние, 1984. 367с., с ил.
  3.  Григорьев А.М. “Винтовые конвейеры”/ М.: Машиностроение., 1972. 184 с.: ил.
  4.  Дунаев  В.И. Конструирование узлов и деталей машин”/ М.: Машиностроение. 1984.
  5.  Длоугий В.В. Приводы машин: Справочник”/ В.В. Длоугий, Т.И. Муха: Под общей ред. В.В. Длоугого – 2-е изд. перераб. и доп.- Л.: Машиностроение., Ленинградское отделение, 1982. – 383 с.: ил.
  6.  Зенков Р.Л. и д.р. Машины непрерывного транспорта: Учебник для студентов вузов, обучающихся по специальности “Подъемно – транспортные машины и оборудование.” / Р.Л. Зенков, И.И. Ивашков, Л.Н. Колобов,- 2-е изд., перераб. и доп. –М.: Машиностроение., 1987. – 432 с.: ил.
  7.  Попова Г.Н., Алексеев С.Ю. “Машиностроительное черчение: Справочник”/ Л.: Машиностроение., Ленинградское отд-ние, 1986. – 447с.: ил.
  8.   Спиваковский А.О., Дьячков В.К. Транспортирующие машины: Учебное пособие для машиностроительных вузов”/ 3-е изд. перераб. и доп. –М: Машиностроение., 1983. – 487 с.: ил.   

9


 

А также другие работы, которые могут Вас заинтересовать

26400. Законы биологического развития. Онтогенез и филогенез 21 KB
  Закон взаимосвязи организма и внешней среды закон целостности и неделимости организма: целостность биологических систем поддерживается в процессе развития за счёт интеграции систем закон экономии биоматериала и места основной биогенетический закон Геккель – филогенез определяет онтогенез. Филогенез phylon – род племя – исторический путь развития вида. дифференциации: в процессе развития организма органа ткани или клетки однородные структуры разделяются на обособленные отличающиеся друг от друга части благодаря чему меняются формы...
26401. Застенные железы тонкой кишки 24 KB
  Выводной проток ductus pancreaticus открывается в 12перстную кку: лошадь: объединяется вместе с печёночным протоком в фатеров дивертикул; свинья КРС: расстояние между печёночным и панкреатическим протоками – 35 см; собака: может быть несколько добавочных протоков. и вегетативное печёночное нервное сплетение и выходит общий печёночный проток и лимфатические сосуды в воротах лимфоузел. Пузырный проток соединяется с печёночным образуя желчный проток который идёт в 12перстную кишку. Отток лимфы в поясничную истерну грудной лимфатический...
26402. Зев (fauces) 20.5 KB
  Образован мягким нёбом сверху корнем языка снизу и по бокам небноязычными дужками arcus palatoglossus в виде складок слизистой оболочки соединяющих мягкое нёбо с боковыми поверхностями корня языка. В составе кольца – язычная миндалина tonsilla lingualis в виде углублений слизистой с лимфатическими фолликулами в корне языка непарная нёбная миндалина tonsilla veli palatini на основании мягкого нёба у лошадей и свиней парные нёбные tonsilla palatina по бокам от нёбноязычных дужек и миндалины евстахиевых труб у их оснований.
26403. Зейгоподий грудной конечности и локтевой сустав 22.5 KB
  Последняя находится в редуцированном состоянии Зейгоподий и стилоподий формируют локтевой сустав art. Иннервация: из плечевого сплетения plexus brachialis которое образовано вентральными ветвями смешанных спинномозговых 5 6 7 8 шейных нервов и первых двух грудных: лучевой поверхностныйкожу и глубокий иннервирует только разгибатели локтевой срединный межкостный.
26404. Зейгоподий тазовой конечности и коленный сустав 22.5 KB
  Они формируют с бедренной костью самый сложный сустав в организме коленный art. Сустав характеризуется большим количеством внутрисуставных связок крестовидные менискоберцовые менискобедренная межменисковая. К этому суставу относится коленная чашка patella которая представляет из себя сесамовидную кость которая развилась в сухожилии четырехглавого мускула бедра.
26405. Зубы — dentes 24.5 KB
  В короткокоронковых зубах обозначают следующие части: а коронку возвышающуюся над десной. Эмаль самая твердая ткань зуба содержит 95 минеральных веществ устойчива к воздействию химических веществ корма и к механическим воздействиям. Под эмалью находится дентин костная ткань зуба с канальцами. Цвет дентина темноватый; б шейка зуба на месте перехода коронки в корень зуба.
26406. Классификация, строение, топография мышц 20.5 KB
  пластинчатые – в области туловища шеи прикрепляют грудную конечность к туловищу брюшные стенки; 2. В их составе тонкие и длинные мышечные волокна область туловища и поясов конечностей; 2. В области туловища на поверхности блестящее сухожильное зеркало; 3.
26407. Кожный покров: строение, назначение, классификация производных 20.5 KB
  В общий кожный покров integumentum communis входят кожа cutis и её производные. Эпидермис образует производные кожи является многослойным плоским ороговевающим эпителием выполняет защитную и нейросенсорную функции. Дерма содержит производные эпидермиса выполняет опорную трофическую и иммунологическую функции. Производные кожного покрова: роговые волосы рога мякиши копыто копытце коготь и железистые обычные: потовые сальные; молочные: вымя множественное вымя специфические: пахучие защитные сигнальные параанальные и др.
26408. Концевой мозг (telencephalon) 21.5 KB
  В ней заложены центры НД. Кора гирифицирована и условно делится на доли: затылочные – высшие зрительные центры лобные – высшие двигательные центры теменные – чувствительные центры височные – слуховые центры. Под корой – белое вещество плаща который образует проводящие пути 3 типов: коммисуральные полушария между собой – мозолистое тело ассоциативные центры в 1 полушарии проекционные кора с подкоркой и спинным мозгом.