43241

Расчет и проектирование сварной металлоконструкции мостового крана

Курсовая

Производство и промышленные технологии

В настоящее время крановые конструкции изготавливаются в форме балочных систем, хотя раньше применяли фермы (было распространено в промышленности). Проектирование фермы начинается с выбора её рациональной системы. Система фермы зависит от назначения, основных требований к эксплуатации и общей компоновки конструкции. Часто рациональная система определяется на основе опытного проектирования, сравнения нескольких вариантов и выбора оптимального решения. В данной работе я произвожу расчет и проектирование конструкции мостового крана.

Русский

2013-11-04

228.5 KB

59 чел.

Министерство образования Российской Федерации

ГОУ ВПО Уральский Государственный Технический Университет – УПИ

Кафедра: «Технология сварочного производства»

КУРСОВОЙ ПРОЕКТ

Расчет и проектирование сварной

металлоконструкции мостового крана

Пояснительная записка

Студент группы М-465к                       Шустова К.В.

Руководитель:                                    Пономаренко Д.В.

Екатеринбург

2003

СОДЕРЖАНИЕ

Задание на курсовое проектирование.

ВВЕДЕНИЕ

  1.  Назначение и описание крана.
  2.  Выбор геометрической схемы.
  3.  Выбор и характеристика основного металла.
  4.  Выбор способа сварки и сварочных материалов.
  5.  Определение внутренних усилий и выбор сечений (ЭВМ).
  6.  Расчет сварных узлов.
  7.  Расчет концевой балки.
  8.  Проверка работоспособности стержней при межузловом приложении нагрузки.
  9.  Технология сборки и сварки концевой балки.

Список использованной литературы

ВВЕДЕНИЕ

     Целью курсового проектирования является расширение и закрепление знаний, полученных при изучении курса «Расчет и проектирование сварных конструкций», а также получение навыков самостоятельного решения конкретных конструкторских задач.

При выполнении курсового проекта студент должен закрепить практические навыки расчета на прочность и выносливость относительно сложных конструкций и их элементов, научиться выбирать материал сварной конструкции, конструировать сварные узлы. Кроме того, студент должен знать основы работы с научной и справочной литературой, строго соблюдать требования ГОСТов.

Темой курсового проекта является сварная металлоконструкция крана. Задание на проектирование содержит основные технические характеристики крана (пролет, грузоподъемность, режим работы), а также его конструктивные особенности.

Пояснительная записка включает: назначение и описание крана, выбор способа сварки и сварных материалов, выбор основного металла, расчет и подбор сечений элементов металлоконструкции и другое.

НАЗНАЧЕНИЕ И ОПИСАНИЕ КРАНА.

Мостовой кран – стационарный подъемный механизм, предназначенный для перемещения грузов в пределах рабочей зоны.

Технические характеристики:

Грузоподъемность   80 кН

База крана              4,4 м

База тележки             1м

Масса тележки             2,2 т

Режим работы              средний

Пролет              22,5 м

Ширина крана             5,4 м

Колея тележки             1,4 м

Масса крана             14,5 т

Температура эксплуатации         > – 30 ̊

Скорость передвижения, м/с: крана - 1,25

    тележки - 0,63

Конструкция крана:   сварная

Материал принят:  сталь Вст3сп

В настоящее время крановые конструкции изготавливаются в форме балочных систем, хотя раньше применяли фермы (было распространено в промышленности). Проектирование фермы начинается с выбора её рациональной системы. Система фермы зависит от назначения, основных требований к эксплуатации и общей компоновки конструкции. Часто рациональная система определяется на основе опытного проектирования, сравнения нескольких вариантов и выбора оптимального решения. В данной работе я произвожу расчет и проектирование конструкции мостового крана.

ВЫБОР ГЕОМЕТРИЧЕСКОЙ СХЕМЫ

  Геометрические размеры:

H=(0,08…0,1)Lk=2м

H=H/2=1м

С =(0,12—0,3)L=5,25м       

 D =(1.0—1.5)H=3м 

Расчетные нагрузки:

Вес механизма передвижения Рм для среднего режима работы принимаем 15кН при грузоподъемности 80кН

Главная ферма

Масса фермы 1/8 массы крана mгл.ф.=1/8·14,5=1,8т

Pk=1/K(nт·mт·g+nq·Q)=32кН    , где

Pkдавление колеса тележки

Кколичество колес тележки = 4

Q грузоподъемность

nт=1.05

mтмасса тележки

nqбаза тележки

Рr1=0.15Рк=4,8кН

Ферма связи

mф.св.=1/2mгл.ф.=0,9т

Рм2=0.1·Рм/2=4,8 кН

Рr2=0.15· Pk=7,5кН

Ферма жесткости

m ф.ж=1/2·mгл.ф=0,9т

ВЫБОР И ХАРАКТЕРИСТИКА ОСНОВНОГО МЕТАЛЛА

К числу рекомендуемых марок стали относятся стали Ст3сп и Ст3пс (ГОСТ 380-71). Они  поставляются с гарантией механических свойств и химического состава. Служебные свойства этих сталей, при толщине до 10 мм идентичны, причем в профильном и листовом прокате этой толщины, металл имеет удовлетворительные показатели по ударной вязкости до температуры – 40 оС.

Углеродистые стали подразделяют на низкоуглеродистые (С=0,09…0,25%), среднеуглеродистые (С=0,25…0,46%) и высокоуглеродистые (С=0,46…0,75%). Низкоуглеродистые стали чаще применяют в строительных конструкциях, углеродистые в машиностроении, высокоуглеродистые в инструментальном производстве.

Углеродистые стали обыкновенного качества согласно ГОСТ 380 – 71 делятся на 3 группы:

А – сталь поставляется по механическим свойствам;

Б – сталь поставляется по химическим свойствам;

В – сталь поставляется  по механическим и химическим свойствам(сталь этой группы более дорогая, и поэтому применяется для ответственных конструкций)

В сталях содержаться добавки кремния и марганца, а также вредные примеси – сера и фосфор, содержание которых в сталях ограничивают.

Сталь получают главным образом из смеси чугуна, выплавляемого в доменных печах, со стальным ломом. Сталь плавят в конвекторах, мартеновских  и электрических печах. Хорошее качество конверторной стали, обеспечивается продувкой  кислородом. Наивысшие сорта сталей получают переплавом электрошлаковым, вакуумно-дуговым, электронно-лучевым.

Плавка стали без достаточного количества раскислителей сопровождается выделением газов. Такая сталь называется кипящей (кп). Такие стали применять в сварочных конструкциях недопустимо. Стали раскисленные добавками кремния и марганца остывают в изложницах без интенсивного выделения газов и называются спокойными (сп). Промежуточные стали – полуспокойные (пс). Спокойные и полуспокойные стали по механическим свойствам, как правило, различаются между собой незначительно. Спокойные стали обладают более стабильными свойствами. Производство спокойных сталей дороже. Их обычно применяют в ответственных конструкциях.

В ответственных  конструкциях часто применяют сталь Ст3сп. Цифра в марке стали характеризует содержание в ней углерода. С повышением номера стали возрастают пределы  прочности и текучести и уменьшается относительное удлинение.

Важным  положительным свойством стали является возможность получения сварных соединений со свойствами, близкими к основному металлу. Как  правило, наиболее удовлетворительно свариваются стали, содержащие не более 0,25% углерода. Такая сталь обладает высокой пластичностью. Сталь Ст3сп (ГОСТ 380–71) иногда подвергается  термообработке.

Исходя из условий эксплуатации и технических характеристик в качестве основного металла примем сталь Вст3сп:

температура эксплуатации   -30 +40 оС

максимальная толщина проката 25мм

категории поставки   5

стандарт     ГОСТ 380 – 88   

Сталь поставляют с гарантией механических свойств и химического состава.

Нормальный химический состав углеродистых сталей обыкновенного качества по ГОСТ 380 – 71:

Марка стали

С,%

Mn,%

Si,%

P,% не более

S,% не более

Ст3сп

0,14…0,29

0,4…0,65

0,12…0,5

0,04

0,05

Нормированные показатели механических свойств:

Марка стали

Толщина δ, мм

σт, МПа

δs1,%

σh, МПа

изгиб на 180о 

Ст3сп

до 200

250

26

380 – 400

d=0,55…10мм

Ударная вязкость по ГОСТ 380 – 71:

Толщина образца

ударная вязкость, мДж/м2 , не менее

при Т=20 оС

при Т= - 20 оС

10 – 25

0,7

0,3

ВЫБОР СПОСОБА СВАРКИ И СВАРОЧНЫХ МАТЕРИАЛОВ

При выборе способа сварки  учитывается свариваемость металла заготовок, назначается тип соединения и обеспечивается удобство сборочно-сварочных работ. При наличии крупных сварных изделий часть сварочных операций выполняется при монтаже. Подход к выбору способа сварки и конструктивному оформлению соединений для заводской и монтажной сварки может быть различной. Поэтому размеры элементов и места расположения монтажных швов назначают одновременно с выбором способа сварки. Выбор способа сварки обычно включает назначение типа сварного соединения, приемов его выполнения и применения присадочного материала, а также термообработки, если это необходимо. Эти данные предопределяют механические свойства сварного соединения и значения допускаемых напряжений, что необходимо для выполнения расчетов на прочность. Проводить послесварочную термообработку или отказаться от неё – решают, принимая во внимание химический состав основного металла, присадочного материала и способа сварки.

В качестве способа сварки применяем полуавтоматическую сварку плавящимся электродом в защитном газе. Состав газа: СО2=90%, О2=10%. Электродная проволока Ø20мм марки Св-08Г2С. Сварка производится полуавтоматом      ПДО – 517УЗ.

РАСЧЕТ СВАРНЫХ СОЕДИНЕНИЙ

Воспользуемся найденными значениями усилий в стержнях, рассчитанных при помощи ЭВМ , чтобы определить требуемые длины швов.

Создаваемые усилия равномерно распределяются между каждой из двойных раскосов и стоек.

Р=(Рлф)/2

Рл – усилие, воспринимаемое одним лобовым швом

Рф – усилие, воспринимаемое фланговым швом одного уголка

Рл=[]’ кLл

=0,7 – при многопроходной  полуавтоматической сварке

к – катет шва

Lл – ширина полки, длина лобового шва  

Рф=[]’ кLф

Lф – полная длина флангового шва

Рр=0,7Рф

Рр – усилие воспринимаемое максимально нагруженной половиной уголка

Lф=

Расчет узлов

Главная ферма:  узел №2, стержни: раскос №10, стойка №11.

Раскос №10. Двойной равнобокий уголок №7,5

=0.6[]=0.6·250=150Мпа

Рл=150·106·0.7·5·10–3·75·10–3=63000  Н

Рф=(175220–2·63000)/2=24610 Н

Рр=0,7·24610=17227 Н

Lф=17227/(150·106·0,7·5·10–3)=32,8 мм

Принимаем Lф=100 мм

Стойка№11. Двойной равнобокий уголок № 4,5

Рл=150·106·0.7·5·103·45·103=18900 Н

Рф=(461402·18900)/2=4170 Н

Рр=0,7·4170=2919Н

Lф=2919/(150·106·0,7·5·103)=9,2 мм

Принимаем Lф=100 мм

Ферма жесткости: узел №12, стержни: раскос №12, стойка №13.

Раскос №12. Двойной равнобокий уголок №10

Рл=150·106·0.7·6·103·100·103=63000 Н

Рф=(2063102·6300)/2=40155 Н

Рр=0,7·40155=28109 Н

Lф=28109/(150·106·0,7·6·103)=44,6 мм

Принимаем Lф=100 мм

Стойка№13. Двойной равнобокий уголок №5,6

Рл=150·106·0.7·5·103·56·103=29400Н

Рф=(2003802·29400)/2=70790 Н

Рр=0,7·70790=49553 Н

Lф=49553/(150·106·0,7·5·103)=94,4 мм

Принимаем Lф=100 мм

Ферма связи: узел №12, стержни: раскос №12, стойка №13.

Раскос №12. Двойной равнобокий уголок №7

Рл=150·106·0.7·5·103·70·103=36750 Н

Рф=(154802·36750)/2=29010 Н

Рр=0,7·29010=20307 Н

Lф=20307/(150·106·0,7·5·103)=38,7 мм

Принимаем Lф=100 мм

Стойка№13. Двойной равнобокий уголок №4,5

Рл=150·106·0.7·5·103·45·103=23625 Н

Рф=(168402·23625)/2=15205 Н

Рр=0,7·15205=10644 Н

Lф=10644/(150·106·0,7·5·103)=20,2 мм

Принимаем Lф=100 мм

РАСЧЕТ КОНЦЕВОЙ БАЛКИ

Р1=mфж·g=1822·9.8=17856 Н  где,

mфжфактическая масса фермы жесткости

q=mкб·g/6,2=2292 Н/м  где,

P2=m·g+0.5(mт·g+Q)=61874 Н

Определяем опорные реакции: ∑М (А)=0        Ra=RB=86 кН

Максимальное значение изгибающего момента  М=93 кН/м

Высота балки коробчатого сечения должна быть не менее:

H=M/Sв·[σ]p=0.4

[σ]p=160·103 МПадопускаемое напряжение

Требуемый момент инерции

Wтр=М/[σ]p=2,9·103 мм3   

Требуемый момент инерции сечения

Jтр= Wтр·h/2=0.58·103 мм4

Ширину концевой балки из удобства примем равной 400 мм.

Определим момент инерции относительно оси Х.

                                                   Jх=2J2+2 Jв 

                                                   J2=S2hв3/12

                                                   Jв= hвS23/12+a2A2

                                                   Jх=2(S2hв3/2+ hвS23/2+a2A2)=

                                                  =2(19·103(4·103)3/12+4·103 (19·103)3/12+

                                                   +0.22·0.42·19·103=3.19·104 м4

Проверка:

σ=Mh/2Jх=468·0.4·103/2·3.19·104=94.15 Мпа<160 Мпа

Действующие в опасном сечении напряжения меньшедопускаемых, следовательно выбранные размеры балки удовлетворяют условиям прочности.

ПРОВЕРКА РАБОТОСПОСОБНОСТИ СТЕРЖНЕЙ ПРИ МУЖУЗЛОВОМ ПОЛОЖЕНИИ НАГРУЗКИ

Проверка верхнего пояса от изгибающего момента.

                                                Jх=178,8 cм4

                                                 F=17,96 cм2

 

Jх.o= Jх+ a2F=178,8+42·17,96=466,2 cм4

σ =M/W≤[ σp]

Wх= Jх.o/yo=466,2/4=116,54 cм3

σ =106 Мпа<160 Мпа

СПИСОК ЛИТЕРАТУРЫ

1. Пономаренко Д.В., Федоров С.В. «Расчет и проектирование сварных конструкций: методические указания к выполнению курсового проекта». Свердловск УПИ, 1990 г.

2. Руденко Н.Ф., Александров М.П., Лысаков А.Г. «Курсовое проектирование грузоподъемных машин». М. Машиностроение, 1988 г.

3. Николаев Г.А., Винокуров В.А. «Расчет и проектирование сварных конструкций». М. Высшая школа, 1971 г.

4. Федоренко В.А. «Справочник по машиностроительному черчению». Л. Машиностроение, 1982 г.


 

А также другие работы, которые могут Вас заинтересовать

28546. О возможности реализации абсолютной секретности в постановке Шеннона 58.5 KB
  А это в свою очередь может повлиять на выбор противником своих действий и таким образом совершенной секретности не получится. Следовательно приведенное определение неизбежным образом следует из нашего интуитивного представления о совершенной секретности. Для совершенной секретности системы величины PEM и PM должны быть равны для всех E и M.
28548. Режим ECB 31 KB
  ECBрежим идеален для небольшого количества данных например для шифрования ключа сессии. Режим шифрования Электронная Кодовая Книга ECB Под режимом шифрования здесь понимается такой алгоритм применения блочного шифра который при отправке сообщения позволяет преобразовывать открытый текст в шифротекст а после передачи этого шифротекста по открытому каналу позволяет однозначно восстановить первоначальный открытый текст. Как видно из определения сам блочный шифр теперь является лишь частью другого алгоритма – алгоритма режима шифрования....
28549. Режим CBC 39 KB
  Дешифрование в режиме СВС Для получения первого блока зашифрованного сообщения используется инициализационный вектор IV для которого выполняется операция XOR с первым блоком незашифрованного сообщения. В режиме CBC при зашифровании каждая итерация алгоритма зависит от результата предыдущей итерации поэтому зашифрование сообщения не поддаётся расспараллеливанию. Однако расшифрование когда весь шифротекст уже получен можно выполнять параллельно и независимо для всех блоков сообщения см. Это дает значительный выигрыш во времени при...
28550. Режим CFB 66.5 KB
  Как и в режиме CBC здесь используется операция XOR для предыдущего блока зашифрованного текста и следующего блока незашифрованного текста. Таким образом любой блок зашифрованного текста является функцией от всего предыдущего незашифрованного текста. Для левых J битов выхода алгоритма выполняется операция XOR с первыми J битами незашифрованного текста Р1 для получения первого блока зашифрованного текста С1. При дешифровании используется аналогичная схема за исключением того что для блока получаемого зашифрованного текста выполняется...
28551. Режим шифрования с обратной связью по выходу (OFB) 52.55 KB
  Разница заключается в том что выход алгоритма в режиме OFB подается обратно в регистр тогда как в режиме CFB в регистр подается результат применения операции XOR к незашифрованному блоку и результату алгоритма см. Шифрование в режиме OFB Основное преимущество режима OFB состоит в том что если при передаче произошла ошибка то она не распространяется на следующие зашифрованные блоки и тем самым сохраняется возможность дешифрования последующих блоков. Дешифрование в режиме OFB Недостаток режима OFB заключается в том что он более уязвим к...
28552. Симметричные методы шифрования DES 63.46 KB
  Функция перестановки одна и та же для каждого раунда но подключи Ki для каждого раунда получаются разные вследствие повторяющегося сдвига битов ключа. Последовательность преобразований отдельного раунда Теперь рассмотрим последовательность преобразований используемую на каждом раунде. Создание подключей Ключ для отдельного раунда Ki состоит из 48 битов. На каждом раунде Ci и Di независимо циклически сдвигаются влево на 1 или 2 бита в зависимости от номера раунда.
28553. Примеры современных шифров проблема последнего блока DES 26.44 KB
  Альтернативой DES можно считать тройной DES IDEA а также алгоритм Rijndael принятый в качестве нового стандарта на алгоритмы симметричного шифрования. Также без ответа пока остается вопрос возможен ли криптоанализ с использованием существующих характеристик алгоритма DES. Алгоритм тройной DES В настоящее время основным недостатком DES считается маленькая длина ключа поэтому уже давно начали разрабатываться различные альтернативы этому алгоритму шифрования.
28554. Распределение ключей. Использование базовых ключей 13.15 KB
  Он заключается в доставке абоненту сети связи не полного комплекта ключей для связи со всеми другими абонентами а некоторой универсальной заготовки уникальной для каждого абонента по которой он может вычислить необходимый ему ключ. Пусть в сети связи действуют N абонентов занумеруем их от 0 до N1 и поставим каждому абоненту уникальный открытый идентификатор Yi из некоторого множества Y открытый в смысле общеизвестный. Генерация ключей для абонентов сети связи заключается в выработке N секретных ключей Xi из некоторого множества X....