43379

Криві в параметричному представленні

Контрольная

Математика и математический анализ

3 Визначити площу фігури обмеженої лініями 1будуємо графічне зображення фігури 2визначаю точки перетину кривих з віссю ОХ 3одна з одною 4обчислюємо площу Завдання 7.Авизначити вузлові точки xi у j та їх кількістьnкількість значень xim кількість значень у j відповідно до заданих для цих змінних проміжків та кроків hx i hy. Така крива епіциклоїда – могла б виникнути як траєкторія точки маленької окружності яка котиться по внутрішній фіксованій окружності. Обчислення каустики як траєкторії точки на окружностіщо котиться було...

Украинкский

2013-11-06

667.5 KB

0 чел.

                                            Розвязування Задач

1)Обчислення виразів

А)

 

Б)

В)

Г)

2.Табулювання кусково неперервних функцій A)  

Б)


3.Розв
язування рівнянь(рівняння №1) 

а)графічний метод

Дане  рівняння має 4 коренів на інтервалі (-3,2)

Б)функція root

 Наближено розв’язуємо за допомогою задання наближеного значення кореня


В)метод виділення змінної

Дана матриця є доведенням того,що рівняння не обчислюється точними методами

Г)розрахунковим блоком given find


(рівняння №2)
 

А)графічний метод

Б)функція root

В)метод виділення змінної

Коренів не находить

Г)розрахунковий блок Given Find

4.Розвязування лінійних рівнянь

1)способом обрненої матриці

2)методом Гауса

Вилучив останній стовпчик з матриці який містить розв’язок системи:

3)за допомогою блоку given-find

а)із заданням початкового значення коренів(нульові значення)

Б)точний спосіб обчислення коренів

4)За допомогою розрахункового блоку given-minerr

А)задаючи початкові значення коренів

5)Розвязування системи за допомогою символа  solve

Завдання 6.1 Розв’язування задач і з застосуванням інтегруванням

1.Обчислення визначеного інтегралу

2.Обчислення невизначеного інтегралу

А)за допомогою знаку символьного перетворення

Б)за допомогою команди Символи->Змінні->Інтеграція

Завдання 6.2 Обчислення похідних.

1)для першої похідної

А)через символьне перетворення

Б)за допомогою команди Символи->Змінні->Диференціали

2)обчислення третьої похідної

А)через символьне перетворення

Б)Використовуючи трикратно команду Символи->Змінні->Диференціали

Завдання 6.3

Визначити площу фігури обмеженої лініями

1)будуємо графічне зображення фігури

2)визначаю точки перетину кривих з віссю ОХ

3)одна з одною

4)обчислюємо площу

Завдання 7.

Побудова графіків поверхонь

1).А)визначити вузлові точки xi ,у j та їх кількість(n-кількість значень xi,m- кількість значень у j ), відповідно до заданих для цих змінних проміжків та кроків hx i hy.

Б) визначити матрицю, за значеннями якої будується поверхня, і вивести ці значення:

В)побудувати поверхню і вибрати для неї вдале розміщення

2) А)Будуємо контурний графік

 

Б) виведемо z(x,y) для найбільших і найменших значень

Криві в параметричному представленні x(t),y(t)

Крива вважається представлена параметрично в декартових координатах,якщо вона визначена одним із наданих тут способів (зліва-дійснозначні функції,зправа-комплекснозначні):

                                                                                    

                                                  

У прикладі 1 розглядається циклоїда – крива, що описується точкою на окружності,що котиться по прямій.Якщо окружність котиться по іншій окружності,яка має з нею зовнішнє або внутрішнє дотикання,виникають відповідно епі- і гіпоциклоїди.В прикладах представлена комплексна параметризація цих кривих.Інтеграли Френеля відіграють важливу роль при вивченні явища дифракції.Крім того,  знаходима за їх допомогою клотоїда використовується для прокладки поворотів при будівництві доріг,оскільки кривизна(поворот керма) цього виду кривих росте пропорційно довжині дуги(пройденій відстані).

Відомо, що падаючі на параболічне зеркало промені,паралельні осі параболи, відбиваючись,збираються в фокусі.В зв’язку з цим автомобільні фари виготовляються у вигляді параболічного зеркала, у фокусі якого розташоване джерело світла. В той час як дзеркальній поверхні достатньо легко придати форму ідеальної параболи, створити лінзу такої форми, що б вона збирала в одній точці пучок паралельних променів, дуже важко.

Сферична поверхня-це форма, яку достатньо легко надати,наприклад, лінзі. Для падаючих на зеркало паралельних променів,які віддалені від осі на різні відстані, ми відповідно з законом відбиття  розраховуємо напрям відбитих променів.Ці промені не перетинаються в одній точці,як у випадку параболічного дзеркала,а огинають деяку поверхню, поперечний переріз якої називається каустикою(пунктирна пряма на малюнку). Така крива- епіциклоїда – могла б виникнути як траєкторія точки маленької окружності, яка котиться по внутрішній фіксованій окружності.

Обчислення каустики як траєкторії точки на окружності,що котиться було мною опущено, головним чином із-за громіздкості виникаючих формул.Ці вичищення можна легко провести самостійно.Якщо оприділити точку перетину двох відбитих променів і потім за допомогою граничного переходу ототожнити два паралельних вихідних промені, координати точки перетину і будуть параметричним представленням каустики.Але нажаль при находжені границі за допомогою активної символіки получаються дуже довгі вирази,які до того ж не можуть бути розбиті на рядки.По цій причині я опустив  частину обчислень.

Приклад 1:Сферичне дзеркало: представлення пів окружності - парметричне і наявне:

 

Вирішуєм відносно у:

                                                                                       

Визначення у вигляді функції:                  

Нахил нормалі і ут між падючим променем і нормаллю:

Відбитий промінь, получений на основі закону відбиття: 

Вирішуємо відносно У і визначаємо як функцію:

Представлення каустики як епіциклоїди:

Проміжки вимірювання змінних:

Графік: 

Криві в полярному представленні r(φ)

Крива рахується задана в полярних координатах, якщо вона визначена наступним чином:

r:[φ1,φ2]→R      φr(φ)

Приклад 1 (дослідження кардіоїди)

В даному прикладі визначаються точки кардиоїди, в яких дотичні проходять вертикально чи горизонтально.

Кардиоїда представляє собою особливу різновидність епіциклоїди. Ця крива є відповідністю траєкторії руху точки, яка находиться на окружності, яка котиться по іншій окружності.При цьому радіуси обох окружностей повинні співпадати.Ми розглядаємо полярне представлення цієї кривої. Що б оприділити нахил дотичних, доцільно перейти до парметричного представлення в полярних координатах.Вирішивши рівняння

і , ми знаходимо точки, в яких дотичні розташовані вертикально і відповідно горизонтально.Оскільки параметр φ  в обох представленнях позначає полярний кут, ми можемо зразу нанести найдені точки на графік в полярних координатах. Але Marhcad находить тільки ті точки з вертикальними і горизонтальними дотичними, які розташовані у верхні частині графіка,решту точок легко оприділити самостійно.

Приклад 1: кардиоїда: Горизонтальнеі і вертикальні дотичні.

                            визначення в полярних координатах

                      перетворення в декартові координати для визначення

                       нахилу дотичних

Вертикальні дотичні:

                        

Вибираємо команду Differentiate(Диференціали) підменю Variable(змінні) меню Symbolics(символи).

повторюємо операцію 2 раз.

     

команда simplify(спростити) меню Symbolics(символи)

копіюємо і прирівнюємо до «0».

             

обчислюємо і присвоюємо отримані результати вектору α.

Горизонтальні дотичні:

             

проводимо аналогічні операції.

Графік:    проміжки зміни змінних :

 


 

А также другие работы, которые могут Вас заинтересовать

46282. The category of voice 12.45 KB
  There re two min voices in English: the ctive voice nd the pssive voice. The ctive voice indictes tht the ction is directed from the subject or issues from the subject thus the subject denotes the doer gent of the ction The pssive voice indictes tht the ction is directed towrds the subject. The ctive voice hs no specil mens of formtion.
46283. Выготский Л.С. Обучение и развитие в дошкольном возраст 12.38 KB
  Обучение и развитие в дошкольном возрасте Главный поднимаемый вопрос касается того что представляют собой программы для дошкольного сада чем они отличаются от программ для школы какое место они занимают в педагогической работе детского сада какого рода деятельность ребенка и с ребенком охватывают и разрабатывают эти программы. Отход от этих границ отражается на умственном развитии ребенка. Необходимо знать что процессы обучения находятся в зависимости от особенностей ребенка находящихся в зоне его ближайшего развития. Важнейшей...
46286. Интуитивное (дооператорное) мышление по Пиаже 12.16 KB
  Интуитивное дооператорное мышление по Пиаже. Дооператорное мышление стадия развития интеллекта ребенка от 2 до 78 лет. Как и допонятийное символическое мышление из которого оно непосредственно вырастает интуитивное мышление продолжает развитие в направлении намеченном сенсомоторным интеллектом. Интуиция следовательно выступает и как образное мышление.
46287. Pronouns 12.14 KB
  The generlizing substitutionl function of pronouns mkes them into syntctic representtive of ll the notionl clsses of words. Even personl pronouns of the first nd second persons ply the representtive role which is exposed by the ddresses nd ppositions – I Sm Brown ws born in 1975. But seven personl pronouns hve n objective cse Ime. Unlike nouns pronouns do not dmit determiners rticles they hve person nd gender distinctions singulr nd plurl forms re often not morphologiclly relted Iwe.
46288. Общая характеристика кризисов развития. Значение кризисов в психическом развитии ребенка 11.94 KB
  Общая характеристика кризисов развития. Значение кризисов в психическом развитии ребенка. Кризис – переломный этап онтогенетического развития. Кризис случается на стыке двух возрастов.
46289. Сравнение объектного и вариантного обобщений 11.93 KB
  Кроме этого изменения связанные с добавлением сведений о новой специализаций могут затронуть различные единицы компиляции без изменения располагаемых в них программных объектов что тоже ведет к дополнительным затратам. При этом все добавления связанные с новой фигурой могут осуществляться во вновь создаваемых единицах компиляции. Процесс добавления новой фигуры полностью аналогичен разработке уже созданных и не требует специальных комментариев. В рассматриваемом случае необходимо только изменить процедуру обеспечивающую ввод новой...
46290. Проблема расширения функциональности в объектно-ориентированном подходе 11.85 KB
  Проблема расширения функциональности в объектноориентированном подходе. Использование объектноориентированного подхода Объектноориентированный подход не позволяет в данном случае получить элегантное решение.