43379

Криві в параметричному представленні

Контрольная

Математика и математический анализ

3 Визначити площу фігури обмеженої лініями 1будуємо графічне зображення фігури 2визначаю точки перетину кривих з віссю ОХ 3одна з одною 4обчислюємо площу Завдання 7.Авизначити вузлові точки xi у j та їх кількістьnкількість значень xim кількість значень у j відповідно до заданих для цих змінних проміжків та кроків hx i hy. Така крива епіциклоїда могла б виникнути як траєкторія точки маленької окружності яка котиться по внутрішній фіксованій окружності. Обчислення каустики як траєкторії точки на окружностіщо котиться було...

Украинкский

2013-11-06

667.5 KB

0 чел.

                                            Розвязування Задач

1)Обчислення виразів

А)

 

Б)

В)

Г)

2.Табулювання кусково неперервних функцій A)  

Б)


3.Розв
язування рівнянь(рівняння №1) 

а)графічний метод

Дане  рівняння має 4 коренів на інтервалі (-3,2)

Б)функція root

 Наближено розв’язуємо за допомогою задання наближеного значення кореня


В)метод виділення змінної

Дана матриця є доведенням того,що рівняння не обчислюється точними методами

Г)розрахунковим блоком given find


(рівняння №2)
 

А)графічний метод

Б)функція root

В)метод виділення змінної

Коренів не находить

Г)розрахунковий блок Given Find

4.Розвязування лінійних рівнянь

1)способом обрненої матриці

2)методом Гауса

Вилучив останній стовпчик з матриці який містить розв’язок системи:

3)за допомогою блоку given-find

а)із заданням початкового значення коренів(нульові значення)

Б)точний спосіб обчислення коренів

4)За допомогою розрахункового блоку given-minerr

А)задаючи початкові значення коренів

5)Розвязування системи за допомогою символа  solve

Завдання 6.1 Розв’язування задач і з застосуванням інтегруванням

1.Обчислення визначеного інтегралу

2.Обчислення невизначеного інтегралу

А)за допомогою знаку символьного перетворення

Б)за допомогою команди Символи->Змінні->Інтеграція

Завдання 6.2 Обчислення похідних.

1)для першої похідної

А)через символьне перетворення

Б)за допомогою команди Символи->Змінні->Диференціали

2)обчислення третьої похідної

А)через символьне перетворення

Б)Використовуючи трикратно команду Символи->Змінні->Диференціали

Завдання 6.3

Визначити площу фігури обмеженої лініями

1)будуємо графічне зображення фігури

2)визначаю точки перетину кривих з віссю ОХ

3)одна з одною

4)обчислюємо площу

Завдання 7.

Побудова графіків поверхонь

1).А)визначити вузлові точки xi ,у j та їх кількість(n-кількість значень xi,m- кількість значень у j ), відповідно до заданих для цих змінних проміжків та кроків hx i hy.

Б) визначити матрицю, за значеннями якої будується поверхня, і вивести ці значення:

В)побудувати поверхню і вибрати для неї вдале розміщення

2) А)Будуємо контурний графік

 

Б) виведемо z(x,y) для найбільших і найменших значень

Криві в параметричному представленні x(t),y(t)

Крива вважається представлена параметрично в декартових координатах,якщо вона визначена одним із наданих тут способів (зліва-дійснозначні функції,зправа-комплекснозначні):

                                                                                    

                                                  

У прикладі 1 розглядається циклоїда – крива, що описується точкою на окружності,що котиться по прямій.Якщо окружність котиться по іншій окружності,яка має з нею зовнішнє або внутрішнє дотикання,виникають відповідно епі- і гіпоциклоїди.В прикладах представлена комплексна параметризація цих кривих.Інтеграли Френеля відіграють важливу роль при вивченні явища дифракції.Крім того,  знаходима за їх допомогою клотоїда використовується для прокладки поворотів при будівництві доріг,оскільки кривизна(поворот керма) цього виду кривих росте пропорційно довжині дуги(пройденій відстані).

Відомо, що падаючі на параболічне зеркало промені,паралельні осі параболи, відбиваючись,збираються в фокусі.В зв’язку з цим автомобільні фари виготовляються у вигляді параболічного зеркала, у фокусі якого розташоване джерело світла. В той час як дзеркальній поверхні достатньо легко придати форму ідеальної параболи, створити лінзу такої форми, що б вона збирала в одній точці пучок паралельних променів, дуже важко.

Сферична поверхня-це форма, яку достатньо легко надати,наприклад, лінзі. Для падаючих на зеркало паралельних променів,які віддалені від осі на різні відстані, ми відповідно з законом відбиття  розраховуємо напрям відбитих променів.Ці промені не перетинаються в одній точці,як у випадку параболічного дзеркала,а огинають деяку поверхню, поперечний переріз якої називається каустикою(пунктирна пряма на малюнку). Така крива- епіциклоїда – могла б виникнути як траєкторія точки маленької окружності, яка котиться по внутрішній фіксованій окружності.

Обчислення каустики як траєкторії точки на окружності,що котиться було мною опущено, головним чином із-за громіздкості виникаючих формул.Ці вичищення можна легко провести самостійно.Якщо оприділити точку перетину двох відбитих променів і потім за допомогою граничного переходу ототожнити два паралельних вихідних промені, координати точки перетину і будуть параметричним представленням каустики.Але нажаль при находжені границі за допомогою активної символіки получаються дуже довгі вирази,які до того ж не можуть бути розбиті на рядки.По цій причині я опустив  частину обчислень.

Приклад 1:Сферичне дзеркало: представлення пів окружності - парметричне і наявне:

 

Вирішуєм відносно у:

                                                                                       

Визначення у вигляді функції:                  

Нахил нормалі і ут між падючим променем і нормаллю:

Відбитий промінь, получений на основі закону відбиття: 

Вирішуємо відносно У і визначаємо як функцію:

Представлення каустики як епіциклоїди:

Проміжки вимірювання змінних:

Графік: 

Криві в полярному представленні r(φ)

Крива рахується задана в полярних координатах, якщо вона визначена наступним чином:

r:[φ1,φ2]→R      φr(φ)

Приклад 1 (дослідження кардіоїди)

В даному прикладі визначаються точки кардиоїди, в яких дотичні проходять вертикально чи горизонтально.

Кардиоїда представляє собою особливу різновидність епіциклоїди. Ця крива є відповідністю траєкторії руху точки, яка находиться на окружності, яка котиться по іншій окружності.При цьому радіуси обох окружностей повинні співпадати.Ми розглядаємо полярне представлення цієї кривої. Що б оприділити нахил дотичних, доцільно перейти до парметричного представлення в полярних координатах.Вирішивши рівняння

і , ми знаходимо точки, в яких дотичні розташовані вертикально і відповідно горизонтально.Оскільки параметр φ  в обох представленнях позначає полярний кут, ми можемо зразу нанести найдені точки на графік в полярних координатах. Але Marhcad находить тільки ті точки з вертикальними і горизонтальними дотичними, які розташовані у верхні частині графіка,решту точок легко оприділити самостійно.

Приклад 1: кардиоїда: Горизонтальнеі і вертикальні дотичні.

                            визначення в полярних координатах

                      перетворення в декартові координати для визначення

                       нахилу дотичних

Вертикальні дотичні:

                        

Вибираємо команду Differentiate(Диференціали) підменю Variable(змінні) меню Symbolics(символи).

повторюємо операцію 2 раз.

     

команда simplify(спростити) меню Symbolics(символи)

копіюємо і прирівнюємо до «0».

             

обчислюємо і присвоюємо отримані результати вектору α.

Горизонтальні дотичні:

             

проводимо аналогічні операції.

Графік:    проміжки зміни змінних :

 


 

А также другие работы, которые могут Вас заинтересовать

19002. Флуктуации. Теорема Найквиста 329.5 KB
  Лекция XV 1. Флуктуации. До сих пор основное внимание за редкими исключениями было уделено вычислению средних значений различных физических величин. Однако статистическая теория позволяет вычислить и их флуктуации отклонение от средних связанные с самопроизвольны
19003. Описание движения системы материальных точек в нерелятивистской механике. Общая схема механики Ньютона. Основные определения 273 KB
  Лекция 1. Описание движения системы материальных точек в нерелятивистской механике. Общая схема механики Ньютона. Основные определения Основная задача механики нахождение положения тел в любые моменты времени при условии что известны начальные положения и скорос
19004. Принцип наименьшего действия (принцип Гамильтона). Уравнения Лагранжа 1.15 MB
  Лекция 2. Принцип наименьшего действия принцип Гамильтона. Уравнения Лагранжа Самая общая формулировка закона движения системы с степенями свободы дается принципом наименьшего действия или принципом Гамильтона. Согласно этому принципу каждая механическая сист
19005. Принцип относительности Галилея. Функция Лагранжа свободной материальной точки. Функция Лагранжа системы взаимодействующих частиц. Функция Лагранжа в декартовых и обобщённых координатах 275 KB
  Лекция 3. Принцип относительности Галилея. Функция Лагранжа свободной материальной точки. Функция Лагранжа системы взаимодействующих частиц. Функция Лагранжа в декартовых и обобщённых координатах Установим вид функции Лагранжа простейших механических систем и уста...
19006. Примеры нахождения функции Лагранжа, составления уравнений Лагранжа и их использования для описания движения простейших механических систем 1.35 MB
  Лекция 4. Примеры нахождения функции Лагранжа составления уравнений Лагранжа и их использования для описания движения простейших механических систем Рассмотрим применение метода Лагранжа к описанию движения простейших систем. Но сначала повторим основные идеи и р
19007. Интегралы движения. Однородность времени и закон сохранения энергии. Однородность пространства и закон сохранения импульса 328.5 KB
  Лекция 5. Интегралы движения. Однородность времени и закон сохранения энергии. Однородность пространства и закон сохранения импульса. Изотропность пространства и закон сохранения момента импульса Величины и меняются со временем. Однако существуют такие их комбина
19008. Общие свойства одномерного движения. Интегрирование уравнения одномерного движения. Период финитного движения в произвольном потенциале 301 KB
  Лекция 6. Общие свойства одномерного движения. Интегрирование уравнения одномерного движения. Период финитного движения в произвольном потенциале Одномерным называется движение системы с одной степенью свободы: . в самом общем виде функция Лагранжа выглядит так:
19009. Движение двух взаимодействующих частиц. Приведение к задаче о движении в цен-тральном поле. Общие закономерности движения в центральном поле 268 KB
  Лекция 7. Движение двух взаимодействующих частиц. Приведение к задаче о движении в центральном поле. Общие закономерности движения в центральном поле Полное аналитическое решение в общем виде допускает чрезвычайно важная задача о движении системы из взаимодействую
19010. Движение в центральном поле. Финитное и инфинитное движение. Падение на центр 828 KB
  Лекция 8. Движение в центральном поле. Финитное и инфинитное движение. Падение на центр Выберем начло координат в центре поля См. рисунок. В начальный момент времени частица находилась в какото точке имела импульс и следовательно имела относительно центра поля м...