43496

Исследование и программная реализация методов алгоритмов теории графов

Курсовая

Информатика, кибернетика и программирование

Реализовать выбранный алгоритм на языке Pscl желательно использовать представление графа списками. Пояснительная записка включает в себя 23 страницы текста рисунок исходного графа рисунок МОД схему алгоритма 2 использованных источника. Данная программа позволяет: Ввести граф используя матрицу длин дуг; Получить матрицу задающую минимальное остовное дерево; Провести тестирование алгоритма; Введение Во многих прикладных задачах теории графов важно иметь возможность сопоставить ребрам графа определенные числа которые соответствуют...

Русский

2013-11-06

115 KB

27 чел.

10

PAGE  17

Министерство образования Российской Федерации

ГОУВПО «Сибирский государственный технологический университет»

Кафедра: системотехники

ДИСКРЕТНАЯ МАТЕМАТИКА

ИСЛЕДОВАНИЕ

МЕТОДОВ И АЛГОРИТМОВ ТЕОРИИ ГРАФОВ

Курсовая работа

Пояснительная записка

(ИТ. 000000.000 КР)

                                                                          Руководитель:                     

                                        Иванилова Т.Н.

                                                                                                                ______________________________

                                                                                                                     дата                      оценка                 роспись

                             Выполнил:

                                               Студент группы 21-6

                                       Идельсон  С.Е.                                                                                                                                                        

                                                                                                              ______________________________   

                                                                                                                     дата сдачи                                   роспись

Сибирский государственный технологический университет

Кафедра: системотехники

ЗАДАНИЕ

НА КУРСОВУЮ РАБОТУ ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ

Студент       Идельсон Сергей Евгеньевич

Факультет  ФАИТ Группа 21-6

Тема:  Исследование и программная реализация методов алгоритмов теории графов.

Вариант 6   

   Иметься n городов, соединенных сетью дорог. Заданы длины участков дорог между парами городов. Спроектировать структуру телефонной сети с минимальной стоимостью затрат на ее строительство, если считать что стоимость  участка сети между двумя городами пропорциональна расстоянию между ними.

Предложенную задачу сформулировать в терминах теории графов и подобрать соответствующий алгоритм.

Реализовать выбранный алгоритм на языке Pascal, желательно использовать представление графа списками. Предусмотреть возможность ввода разнообразных входных данных.

Окончательный вариант программы должен отображать смысловую постановку задачи.

Приложить распечатки экранов.

Содержание

Реферат

Введение

1 Деревья в теории графов. Минимальное остовное дерево

2 Решение задачи

2.1 Входная и выходная информация

2.2 Схема алгоритма

2.3 Текст программы

2.4 Протокол контрольного расчета

3 Инструкция по работе с программой

Заключение

Список использованных источников

Реферат

Расчетно-графическая работа представляет собой решение задачи по расчету минимального остовного дерева. Расчет выполнен с помощью языка программирования  Turbo Pascal 7.0 на ПК AMD Athlon XP 1900+.

Пояснительная записка включает в себя 23 страницы текста, рисунок исходного графа, рисунок МОД, схему алгоритма, 2 использованных источника.

Ключевые слова: граф, дерево, минимальное остовное дерево.

Цель работы: овладеть навыками работы  с алгоритмом построения минимального остовного дерева.

Метод исследования – теория графов, алгоритмизация, язык программирования Pascal.

Данная программа позволяет:

  1.  Ввести граф, используя матрицу длин дуг;
  2.  Получить матрицу, задающую  минимальное остовное дерево;
  3.  Провести тестирование алгоритма;

Введение

Во многих прикладных задачах теории графов важно иметь возможность сопоставить ребрам графа определенные числа, которые соответствуют определенным физическим свойствам. Например, если мы желаем использовать граф для представления электрической  цепи, то может быть уместным сопоставлять каждому ребру графа соответствующие сопротивление. Или как в нашем случае, граф может представлять собой сеть городов соединенных дорогами.

1 Деревья в теории графов. Минимальное остовное дерево

Дерево – это связный графа, который не содержит циклов.

Одна из причин, по которой деревья имеют большое значение в прикладных задачах теории графов, связана с тем, что любой связный граф содержит в себе дерево, которое называется деревом покрытия или покрывающим деревом, которое связывает все вершины графа. Помимо этого дерево покрытия обеспечивает удобное множество путей, связывающих любые пары вершин графа.

Остовное дерево (ОД) – любой связный подграф связного графа , содержащий все вершины и являющийся деревом.

Минимальное остовное дерево (МОД) – остовное дерево нагруженного графа с минимальной суммой длин дуг содержащихся в нем.

Для нахождения МОД в программе был использован алгоритм Крускала:

1. Сортируем ребра графа по возрастанию весов.
2. Полагаем, что каждая вершина относится к своей компоненте связности.
3. Проходим ребра в "отсортированном" порядке. Для каждого ребра выполняем:

Если вершины, соединяемые данным ребром, лежат в разных компонентах связности, то объединяем эти компоненты в одну, а рассматриваемое ребро добавляем к минимальному остовному дереву.

Если вершины, соединяемые данным, ребром лежат в одной компоненте связности, то исключаем ребро из рассмотрения.
4. Если есть еще нерассмотренные ребра и не все компоненты связности объединены в одну, то переходим к шагу 3, иначе выход.

2 Решение задачи

2.1. Входная и выходная информация

Для задания нагруженного графа используется матрица длин дуг графа. Размер матрицы задается автоматически при указании количества вершин.  Максимальное количество вершин восемь. Выходная информация это матрица МОД. Она представляет собой квадратную матрицу N x N (где N количество вершин). На пересечении строк и столбцов стоит ноль если вершина не достижима в МОД из вершины определяемой строкой и вес ребра если достижима.

2.3 Текст программы

…………………………………

2.4 Протокол контрольного расчета

Возьмем 7 городов, а длинны дорого зададим матрицей длин дуг. 

0

120

30

25

190

0

170

120

0

0

80

0

0

200

30

0

0

0

180

65

0

25

80

0

0

0

0

80

190

0

180

0

0

75

100

0

0

65

0

75

0

0

170

200

0

80

100

0

0

В результате получим следующий граф

в результате получили матрицу задающую МОД

0

0

0

0

0

0

0

0

0

0

0

0

0

0

30

0

0

0

0

65

0

25

80

0

0

0

0

80

0

0

0

0

0

0

0

0

0

0

0

75

0

0

0

0

0

0

0

0

0

МОД:

3 Инструкция по работе с программой

Для работы программы необходимо вводить количество вершин больше одной, но не больше восьми. Для корректной работы программы необходимо вводить не отрицательную длину дорог. Расстояние вводиться в километрах. Если расстояние это не целое число, то округление проводить в большую сторону.

Работа с алгоритмом:

  1.  Ввести количество городов.
  2.  Заполнить последовательно матрицу длин дуг, обращая внимание на номер ячейки, т.к. матрица автоматически вводиться симметрично.
  3.   После появления экрана с графом нажимаем Enter.
  4.  После просмотра матрицы задающей МОД нажимаем Enter.
  5.  Просмотр МОД.
  6.  После нажатия Enter’а выход из программы.

Необходимое программное обеспечение для работы программы:

MS-DOS, MS Windows95/98/Me/2000/XP

Заключение

Программа работает достаточно быстро. Приведенный алгоритм решения поставленной задачи иногда в результате работы программы не всегда дает полностью оптимальное МОД.

В качестве путей развития рассматривается вторая версия программы, которая будет реализована на языке программирования Delphi.  

Список использованных источников

  1.  Иванилова Т.Н. Дискретная математика: Сборник заданий для курсовых работ с примерами выполнения. – Красноярск: СибГТУ, 2004.
  2.  Логинов Б.М. Введение в дискретную математику. – Калуга 1998.


Начало
Zmat

i:=1 ton

j:=1 ton

m[i,j]:=0;

Конец Zmat

Начало Readmat

i:=1 ton

Конец Readmat

:=1

j<=n

да

j=i

inc(j)

m[i,j]

m[j,i]:=m[i,j];              inc(j);

да

Начало Pmat

flag and i<=n-1

Sum:=0

j:=1 to n-1

sum:=sum+m[i,j];

flag:=(sum<>0); inc(i);

да

Конец Pmat

Начало процедуры minot

m:=1; i:=1

i<=n

j:=1

да

j<=n

да

m[i,j]<>gm

inc(w);    E[w,1]:=i;          E[w,2]:=j;

ew[w]:=m[i,j];

mot[i,j]:=gm;   inc(j);

inc(i);

i:=1;

i<m

j:=1

да

j<=m-1

да

ew[j]>=ew[j+1]

t:=ew[j];   ew[j]:=ew[j+1];   ew[j+1]:=t;          k:=e[j,1]; e[j,1]:=e[j+1,1];    e[j+1,1]:=k;          k:=e[j,2]; e[j,2]:=e[j+1,2];    e[j+1,2]:=k;

inc(j);

inc(i);

да

i:=1;

i<=n

q:=n-1;   i:=1;

да

v[i]:=i;  inc(i);

i<=w and q<>0

v[e[i,1]]<>v[e[i,2]]

да

да

t:=v[e[i,2]];  mot[e[i,1],e[i,2]]:=ew[i];   j:=1;             

j<=n

да

v[j]=t

v[j]:=v[e[i,1]];

inc(j);

q:=q-1;

inc(i);

Конец процедуры minot

Начало

N

n>=2 and n<=8

да

Zmat (n,m);

ReadMat (n,m);

Pmat(n,m,f);

not(f)

да

i:=1 ton

j:=1 ton

minot (n,m,mot)

mot[i,j],'  '

WriteLn

DrawGraph(n,mot);

Конец

DrawGraph(n,m);

1

3

5

6

4

2

7

1

3

5

6

4

2

7


 

А также другие работы, которые могут Вас заинтересовать

52243. Арт-рок – музыка современности 544.5 KB
  Цель урока. Сформировать у учащихся представления о направлении артрок его разновидностях и отличительных чертах. Воспитывать эстетический вкус учащихся формировать навыки оценки рокмузыки с духовнонравственных и эстетических позиций.
52244. MASTERS AND MASTERPIECES 141.5 KB
  Objectives: to develop communictive skills bsed on the usge of the keywords which the lerner hs chosen on the given tsks; to cultivte students` good tste; to fcilitte free speking; to prctice their skills in nlyticl reding nd writing; to revise grmmr; to develop cretive thinking. Do you gree with Hippocrtes Wht is rt One of the definitions of the word rt is the study or cretion of beutiful things. Wht things do you ssocite with the word rt 2. Presenttion of the topic.
52245. Beim Arzt (у лікаря) 62 KB
  sicherlichнапевно der Hustentropfсироп від кашлю glubenсподіватися mir ist schwindligу мене запаморочення furchtbrжахливо ds tut mir leidмені шкода der Kopfschmerzголовний біль der Hlsschmerzболить горло ds Fieberтемпература ich fuhle mich unwohlя почуваю себе погано ІІ.Wenden Sie sich n den rzt wenn Sie krnk fühlen Jich wende mich n den rzt.Wie fühlen Sie sich wenn Sie Grippe oder ngin hben Ich fuhle mich unwohl.Wnn bekommen Sie Schnupfen und Husten Wenn ich krnk bin.
52246. АССЕМБЛЕР. КОМПОНОВЩИК. ЗАГРУЗЧИК. МАКРОГЕНЕРАТОР 237 KB
  LST; на трансляцию нашей программы то ОС считывает ассемблер из внешней памяти из файла MSM. Что делать Для решения проблемы со ссылками вперед ассемблер просматривает текст программы дважды. Полный просмотр текста транслируемой программы принято называть проходом транслятора поэтому ассемблер который делает два прохода называется двухпроходным. они попросту встроены в ассемблер а другие ассемблер строит в процессе трансляции конкретной программы.
52247. Теория вероятностей и математическая статистика 1.94 MB
  Определение: Вероятностью случайного события А называется отношение числа m исходов благоприятствующих событию А к числу всех равновозможных исходов испытания составляющих полную группу несовместных событий. Найти вероятность того что в случайно выбранном четырехзначном числе все цифры различны и оно образованно из цифр 2 4 6 8 9. Найти вероятность того что книги по какой либо тематике окажутся рядом. Найти вероятность того что среди выбранных окажется 6 мужчин.
52248. Греция во II – 1-й пол. I тыс. до н.э. 449.5 KB
  Учитель истории КУ Луганская СОШ IIII ступеней № 48Г. Учитель готовит наглядность объясняет правила игры контролирует ход подготовки команд. План проведения урока Учитель. Учитель.
52249. Развитие силовой выносливости 76 KB
  Повторим мышцы человека и их функцию. Мышцы шеи наклоняют голову поворачивают в стороны. Мышцы предплечья сгибают и разгибают пальцы. Мышцы задней поверхности бедра сгибают ногу в коленном суставе.
52250. Обобщающий урок по теме «Атмосфера» 37 KB
  Мельчайшие капельки воды образовавшиеся в приземном слое атмосферы из насыщенного водяным паром воздуха при его охлаждении туман Вся вода выпавшая из атмосферы на земную поверхность осадки. Разность между наибольшим и наименьшим значениями температуры воздуха в течение суток месяца или года амплитуда. Движение воздуха в горизонтальном направлении из областей высокого давления к областям низкого давления ветер. Атмосферный вихрь с низким давлением в центре и движением воздуха от краев к центру циклон.
52251. Урок-узагальнення знань з теми «Атмосфера» 62.5 KB
  Обладнання: мультимедійна презентація Вид хмар плакат Космічний простір Ракети демонстраційні картки до конкурсів атласи мультимедійний проектор таблиці: Чисте повітря запорука здоровя. Запитання команді Восток Повітряна оболонка нашої планети. у Температура повітря залежить від Кута падіння сонячних променів Прилад для вимірювання напряму і сили вітру. Флюгер Наука що вивчає зміни показників стану повітря.